Online Buying Store
Request for Quote Store
{{minicart.wishlist.length}} {{minicart.cartList.length}}
You have no items in your shopping cart.
You have 1 item in your shopping cart.
{{multiCartItemsStr.replace('[COUNT]', minicart.cartList.length)}}
{{cartItem.ProductName}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
Qty: {{cartItem.Quantity | number : 2}}

Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Image Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Description Created
{{savedCart.Description}} {{savedCart.CreateDate | date : 'yyyy-MM-dd h:mm a'}}
SKU Product Name Unit Cost Qty Line Total
{{cartItem.ProductSku}} {{cartItem.ProductName}} {{cartItem.UnitCost | currency : 'R' : 2}} {{cartItem.Quantity | number : 2}} {{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your saved shopping cart.
You have no items in your wishlist.
Status Order No. Order Date Ship To Order Total Pay Total Balance
Bill Me Later Open Ready To Ship Shipped Picked Up Cancelled Incomplete On Hold Back Ordered Returned {{order.Status}}
{{order.OrderID}} {{order.OrderDate | date : 'yyyy-MM-dd'}} {{order.ShipFirstName}} {{order.ShipLastName}}, {{order.ShipAddress1}} {{order.ShipAddress2}}, {{order.ShipCity}}, {{order.ShipState}} {{order.ShipZipcode}} {{order.GrandTotal | currency : 'R' : 2}} {{order.PayTotal | currency : 'R' : 2}} {{order.GrandTotal - order.PayTotal | currency : 'R' : 2}}
Logo

Comtest Paid Store

Grid View List View Sorting: Normal Sorting: Price Low to High Sorting: Price High to Low Sorting: New Arrivals Sorting: Brand A-Z Sorting: Brand Z-A

PicoScope 4262

sku Product SKU:  PIC-4262

A digital oscilloscope for the analog world

16 bit oscilloscope

  • Dual channel oscilloscope / spectrum analyzer
  • 16-bit resolution
  • Low distortion (96 dB SFDR)
  • Low noise (8.5 µV RMS)
  • 5 MHz bandwidth
  • 16 MS buffer memory
  • Low-distortion signal generator
  • Arbitrary waveform generator
  • USB powered

Most digital oscilloscopes have been designed for viewing fast digital signals. The trend has been to use new technology solely to increase sampling rate and bandwidth. With the PicoScope 4262, however, we have focused on what’s important for measuring analog signals: increasing the resolution, improving dynamic range, and reducing noise and distortion.

The result is an oscilloscope / FFT analyzer that has a level of performance to put most audio analyzers to shame yet has a 5 MHz bandwidth making it equally suitable for vibration and ultrasound signals as well as a wide range of precision measurement tasks.

Many applications such as vibration analysis require long captures at high sampling rates, which requires a deep capture memory. The PicoScope 4262 has a 16 million sample buffer memory so can capture at 10 MS/s for timebases as long as 100 ms/div. If you require longer times, the USB streaming mode can sample directly into PC memory.

Advanced display

PicoScope software dedicates almost all of the display area to the waveform. This ensures that the maximum amount of data is seen at once. The viewing area is much bigger and of a higher resolution than with a traditional benchtop scope.

With a large display area available, you can also create a customizable split-screen display, and view multiple channels or different views of the same signal at the same time. As the example shows, the software can even show multiple oscilloscope and spectrum analyzer traces at once. Additionally, each waveform shown works with individual zoom, pan, and filter settings for ultimate flexibility.

The PicoScope software can be controlled by mouse, touchscreen or keyboard shortcuts.

FFT spectrum analyzer

The spectrum view plots amplitude vs frequency and is ideal for finding noise, crosstalk or distortion in signals. The spectrum analyzer in PicoScope is of the Fast Fourier Transform (FFT) type which, unlike a traditional swept spectrum analyzer, can display the spectrum of a single, non-repeating waveform.

A full range of settings gives you control over the number of spectrum bands (FFT bins), window types, scaling (including log/log) and display modes (instantaneous, average, or peak-hold).

You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. A mask limit test can be applied to a spectrum and you can even use the AWG and spectrum mode together to perform swept scalar network analysis.

More information on Spectrum analyzer >>

arbitrary waveform editor

Arbitrary waveform and function generator

The PicoScope 4262 has a built-in 20 kHz function generator (sine, square, triangle, DC voltage, ramp, sinc, Gaussian, half–sine, white noise and PRBS). The function generator offers an outstanding sine wave distortion performance of 102 dB SFDR.

As well as basic controls to set level, offset and frequency, more advanced controls allow you to sweep over a range of frequencies. Combined with the spectrum peak hold option this makes a powerful tool for testing amplifier and filter responses.

Trigger tools allow one or more cycles of a waveform to be output when various conditions are met such as the scope triggering or a mask limit test failing.

As well as the standard waveforms available from the function generator, custom waveforms can be created using the 16 bit / 192 kS/s arbitrary waveform generator (AWG). AWG waveforms can be created or edited using the built-in editor, imported from oscilloscope traces, or loaded from a spreadsheet.

More information on Arbitrary waveform generator (AWG) >>

High signal integrity

Most oscilloscopes are built down to a price. Ours are built up to a specification.

Careful front-end design and shielding reduces noise, crosstalk and harmonic distortion. Over 20 years of high resolution oscilloscope design experience leads to improved pulse response and bandwidth flatness.

We are proud of the dynamic performance of our products and publish these specifications in detail. The result is simple: when you probe a circuit, you can trust in the waveform you see on the screen.

Portability

The PicoScope 4262 oscilloscope is small, light and portable and requires no external power supply.  

In the lab they take up the minimum of bench space while for the engineer on the move they slip neatly into a laptop bag.

ZAR -1

PicoScope 5000 Series

sku Product SKU:  PIC-5000-S

PicoScope 5000D MSO with hi-res waveform in the background

  • FlexRes 8 to 16-bit hardware resolution
  • Up to 200 MHz analog bandwidth
  • 1 GS/s sampling at 8-bit resolution
  • 62.5 MS/s sampling at 16-bit resolution
  • Up to 512 MS capture memory
  • 16 digital channels on MSO models
  • 130 000 waveforms per second
  • Built-in arbitrary waveform generator
  • 18 serial decoding protocols as standard
  • Up to 200 MHz spectrum analyzer

Today’s electronic designs employ a wide range of signal types: analog, digital, serial (both high- and low-speed), parallel, audio, video, power distribution and so on. All need to be debugged, measured and validated to ensure that the device under test is functioning correctly and within specification.

To handle this variety of signal types, PicoScope 5000D FlexRes hardware employs multiple high-resolution ADCs at the input channels in different time-interleaved and parallel combinations to optimize either the sampling rate to 1 GS/s at 8 bits, the resolution to 16 bits at 62.5 MS/s, or other combinations in between – you select the most appropriate hardware resolution for the requirements of each measurement.

2 and 4 channel models are available, all featuring a SuperSpeed USB 3.0 connection, providing lightning-fast saving of waveforms while retaining compatibility with older USB standards. The PicoSDK® software development kit supports continuous streaming to the host computer at rates up to 125 MS/s. The product is small and light, and operates silently thanks to its low-power fanless design.

Supported by the free-of-charge and regularly updated PicoScope 6 software, the PicoScope 5000D Series offers an ideal, cost-effective package for many applications, including design, research, test, education, service and repair. 

What is FlexRes?

Pico FlexRes flexible resolution oscilloscopes allow you to reconfigure the scope hardware to increase either the sampling rate or the resolution. This means you can reconfigure the hardware to be either a fast (1 GS/s) 8-bit oscilloscope for looking at digital signals, or a high-resolution 16-bit oscilloscope for audio work and other analog applications. Whether you’re capturing and decoding fast digital signals or looking for distortion in sensitive analog signals, FlexRes oscilloscopes are the answer.

PicoScope 5000D zoomed in on a PAL color burst video signal.

Deep capture memory

PicoScope 5000D Series oscilloscopes have waveform capture memories ranging from 128 to 512 million samples – many times larger than traditional benchtop scopes. Deep memory enables the capture of long-duration waveforms at maximum sampling speed. In fact, the PicoScope 5000D Series can capture waveforms over 500 ms long with 1 ns resolution. In contrast, the same 500 ms waveform captured by an oscilloscope with a 10 megasample memory would have just 50 ns resolution.

Deep memory can be useful in other ways too: PicoScope lets you divide the capture memory into a number of segments, up to a maximum of 10 000. You can set up a trigger condition to store a separate capture in each segment, with as little as 1 µs dead time between captures. Once you have acquired the data, you can step through the memory one segment at a time until you find the event you are looking for. Powerful tools are included to allow you to manage and examine all of this data. As well as functions such as mask limit testing and color persistence mode, PicoScope 6 software enables you to zoom into your waveform by a factor of several million. The Zoom Overview window allows you to easily control the size and location of the zoom area.

Other tools, such as DeepMeasureTM, serial decoding and hardware acceleration work with the deep memory, making the PicoScope 5000D Series among the most powerful oscilloscopes on the market.

PicoScope 5000D MSO showing both analog and digital channels

Mixed-signal models

The PicoScope 5000D MSO models add 16 digital channels to the 2 or 4 analog channels, enabling you to accurately time-correlate analog and digital channels. Digital channels may be grouped and displayed as a bus, with each bus value displayed in hex, binary or decimal or as a level (for DAC testing). You can set advanced triggers across both the analog and digital channels. The digital channels can also be used as sources for the serial decoders, giving up to 20 channels of data – for example decoding multiple SPI, I²C, CAN bus, LIN bus and FlexRay signals all at the same time.

PicoScope 5000D pulse width triggering setup menu

Advanced digital triggering

The PicoScope 5000D Series offers an industry-leading set of advanced triggers including pulse width, runt pulse, windowed and dropout. 

PicoScope 5000D MSO logic trigger setup menu

The digital trigger available on MSO models allows you to trigger the scope when any or all of the 16 digital inputs match a user-defined pattern. You can specify a condition for each channel individually, or set up a pattern for all channels at once using a hexadecimal or binary value. You can also use the logic trigger to combine the digital trigger with an edge or window trigger on any of the analog inputs, for example to trigger on data values in a clocked parallel bus.

PicoScope 5000D built-in Arbitrary Waveform Generator

Arbitrary waveform and function generator

All PicoScope 5000D units have a built in 14-bit 200 MS/s arbitrary waveform generator (AWG). You can create and adapt arbitrary waveforms using the built-in editor, import them from existing oscilloscope traces, or load a waveform from a spreadsheet.

PicoScope 5000D Function Generator

The AWG can also act as a function generator with a range of standard output signals, including sine, square, triangle, DC level, white noise and PRBS. As well as the basic controls to set level, offset and frequency, more advanced controls allow you to sweep over a range of frequencies.

Combined with the spectrum peak hold option, this makes a powerful tool for testing amplifier and filter responses. Trigger tools allow you to output one or more cycles of a waveform when various conditions are met, such as the scope triggering or a mask limit test failing.

Gain & phase plot using FRA for PicoScope application

Software Development Kit - write your own apps

The software development kit (SDK) allows you to write your own software and includes drivers for Microsoft Windows, Apple Mac (macOS) and Linux (including Raspberry Pi and BeagleBone).

Example code shows how to interface to third-party software packages such as Microsoft Excel, National Instruments LabVIEW and MathWorks MATLAB. 

There is also an active community of PicoScope users who share code and applications on the Pico forum and PicoApps section of the picotech.com web site. The Frequency Response Analyzer shown opposite is one of the most popular third-party applications.

ZAR -1

PicoScope 4444

sku Product SKU:  PIC-4444

Key features

  • 4 fully differential high-impedance inputs
  • 20 MHz bandwidth
  • Flexible 12 and 14-bit resolution
  • 256 MS deep memory
  • Rejects common-mode noise
  • Interface for intelligent probes and clamps
  • Low-voltage probe for millivolts to 50 V
  • 1000 V CAT III probe for high-voltage applications

Typical applications

  • Non-ground-referenced measurements
  • Safe probing of single-phase and three-phase voltages and currents
  • Measuring power drawn by mobile and IoT devices
  • Mains quality testing
  • SMPS design
  • Hybrid and electric vehicle design
  • Motor drives and inverters
  • Biomedical electronics
  • Measuring differential signals (CAN, balanced audio) with a single channel

 

High end oscilloscope

High-end oscilloscope

At the heart of every PicoScope 4444 is an advanced oscilloscope that offers everything you would expect and much more, including:

  • 10 000 waveform circular buffer
  • Up to 100 000 waveforms per second update rate
  • Serial bus decoding
  • Mask limit testing
  • Advanced math and filtering
  • Measurements with statistics
  • Advanced digital triggering 
  • USB 3.0 connected and powered

 

Differential input oscilloscope

Intelligent differential inputs

With a traditional oscilloscope probe, single-ended measurements are made between a high-impedance input and a low-impedance ground.

With a differential oscilloscope, measurements are made between two high-impedance inputs, allowing measurements to be made across components and test points where neither side is grounded. Differential inputs also reject common-mode noise: noise picked up equally on both high-impedance inputs is rejected.

Each of the four input channels on the PicoScope 4444 features an intelligent probe interface that detects and identifies compatible probes, and powers them where necessary. Each channel can have its own choice of voltage or current probe.

Non-attenuating probes allow high-resolution, low-noise measurement of signals ranging from millivolts to ±50 V. Attenuating probes allow signals up to 1000 V CAT III to be measured. Current probes are available for currents up to 2000 A.

 

D9 to 4mm probe

PicoConnect 441: Measure from millivolts to ±50 V

The PicoConnect 441 differential voltage probes are suitable for voltages up to ±50 V (for higher voltages see the PicoConnect 442). The probes are fitted with industry-standard 4 mm connectors and supplied with detachable sprung hook probe tips. Other 4 mm accessories such as multimeter probes and crocodile clips are available separately.

As well as measuring non-grounded voltage signals, differential inputs are ideal for measuring current through sensing resistors. As neither side needs to be grounded, they can make high-side measurements. The sensitive input ranges, high resolution and fast sampling are ideal for measuring fast-changing currents in battery-powered and IoT devices.

 

Human heartbeat captured on oscilloscope

Human heartbeat captured on PicoScope 4444

The high-impedance, high-resolution inputs are also suited to biological and scientific research, as they allow measurements on low-level millivolt signals (2 mV/div at 12 bits) in the presence of common-mode noise without the need for expensive differential preamplifiers or differential oscilloscope probes. The probe is constructed with twinax cable (twisted-pair inner conductors with an outer shield) to ensure a high common-mode rejection ratio (CMRR). The outer screen of the cable can optionally be connected to a signal ground to improve rejection of common mode voltages and currents.

The PicoConnect 441 probes are also ideal for measuring differential signal sources such as CAN bus and balanced audio on a single channel, and can be used to directly measure from bridge-type sensors such as load cells and pressure sensors.

 

Switch mode power supply waveforms

PicoConnect 441 probes are ideal for work with low voltage SMPS, PicoConnect 442 (shown) for voltages up to 1000 V.

 

PicoConnect 442: 1000 V CAT III probes

The PicoConnect 442 is an attenuating differential voltage probe that increases the input range to 1000 V to allow the safe and cost-effective measurement of single-phase, three-phase and other signals, such as those found in motor drives and inverters.

The PicoConnect 442 probe requires no power supply or batteries. This makes it ideal for mains quality measurement and other long-term measurements.  

The differential inputs of the PicoScope 4444 allow each channel to measure signals with different common-mode voltages. As an example, consider the battery pack in an electric vehicle. You can measure across the whole pack using one channel set to an input range of ±500 V, and at the same time set the other channels to ±5 V to measure across individual cells. This arrangement allows you to take advantage of the full resolution of the oscilloscope.

 

2000A AC/DC current clamp

Three current probes with intelligent probe interface

Three different current probes are available with Pico D9 interfaces. TA300 and TA301 use the Hall effect to measure AC and DC currents without direct connection to the cable, and the TA368 uses the Rogowski principle for AC-only measurements. The intelligent probe interface powers the probes, so no batteries are required. It also means that when you connect either probe, the PicoScope software identifies it and configures the oscilloscope to read in amperes.

The TA300 current probe is a 40 A probe suitable for measuring signals from DC to 100 kHz. It is a precision probe for smaller currents and can resolve down to a few milliamps. 

Read more about the TA300 40 A AC/DC current probe

The TA301 current probe is a switched-range 200/2000 A probe suitable for measuring signals from DC to 20 kHz bandwidth. 

Read more about the TA301 2000 A AC/DC current probe

The TA368 current probe is a single-range 2000 A AC probe suited for measuring signals above DC to 20 kHz, and because the probe is rated to 1000 V CAT III, it is ideal for making mains current measurements.

Read more about the TA368 2000 A AC current probe

In addition to the above probes, Pico stocks a wide range of AC and DC current clamps with BNC connectors that can be connected to the PicoScope 4444 using the TA271 D9 to BNC adaptor.

 

High voltage oscilloscope kit

Powerful and portable

Just load the software, plug in the USB cable and you are up and running in minutes. Saving and printing are easy: PicoScope users can take copying waveforms into reports for granted.

On the bench, a PicoScope saves valuable space and can be placed right by the unit under test.

Laptop users benefit even more: with no power supply required you can now carry an oscilloscope with you all the time in your laptop bag. Perfect for the engineer on the move.

With our scopes, high-end features such as serial decoding, mask limit testing, advanced math channels and segmented memory are all included in the price.

To protect your investment, both the PC software and firmware inside the scope can be updated. Pico has a 26-year history of providing new features for free through software downloads. We deliver on our promises of future enhancements year after year.

Users of our products reward us by becoming lifelong customers and frequently recommending us to their colleagues.

ZAR -1

PICO USB TC-08

sku Product SKU:  PIC-TC-08

8 channel thermocouple data logger

  • 8 channel thermocouple data logger
  • Measures from –270 to +1820 °C (–454 to +3308 °F)
  • High resolution and accuracy
  • Expandable to 20 units / 160 channels
  • Supports all popular thermocouple types
  • Fast sampling rate — up to 10 measurements per second (including CJC)
  • USB connected and powered
  • PicoLog 6 for Windows, macOS and Linux data logging software included
  • PicoSDK drivers for Windows, macOS and Linux included

 

Wide temperature range

The TC-08 thermocouple data logger is designed to measure a wide range of temperatures using any thermocouple that has a miniature thermocouple connector. Pico supply a wide range of suitable thermocouples (see Accessories).

All popular types of thermocouple are supported, allowing an effective temperature range of –270 to +1820 °C  (the actual temperature range depends on the thermocouple being used).

The built in Cold Junction Compensation (CJC) circuit can also be used as a 9th channel to measure room temperature.

 

Fast and accurate temperature data acquisition

With the TC-08 thermocouple data logger your temperature measurements can be made both fast and accurately.

The short conversion time of the TC-08 means up to 10 temperature measurements can be taken every second (cold junction compensation counts as an additional measurement), while the high (20-bit) resolution ensures that the TC-08 can detect minute changes in temperature.  For popular Type K thermocouples the TC-08 can maintain a better than 0.025°C resolution over a –250 to +1370 °C range.

 

terminal board for TC-08 data logger

Also measure voltage and 4–20 mA current loops!

As well as measuring temperature with thermocouples, the terminal board allows other sensors with voltage or current outputs to be connected.  

The optional Single-Channel Terminal Board (see Accessories) plugs into a channel on the TC-08 and turns it into a 20-bit high resolution data logger. Screw terminals allow wires to be attached to the data logger without soldering. The four input ranges (±50 mV, ±500 mV, ±5 V and 4-20 mA) allow a wide range of other sensors and signals to be measured.

 

TC-08 thermocouple data logger

All you need in one easy-to-use unit

Temperature data acquisition with the TC-08 is very easy — simply plug the TC-08 into a USB port on your computer (no external power required), connect your thermocouples, and you are ready to measure temperatures.

The easy-to-use PicoLog data acquisition software is supplied with the TC-08 — allowing you to start measuring and recording temperatures with the minimum effort. The intuitive user interface of PicoLog makes it easy for you to set how frequently you want to take a measurement, and the number of measurements you want to take.

 

Need more?...

If you need more than 8 channels just plug up to 20 TC-08s into a powered USB hub network connected to your PC for a total of 160 channels. You can even mix and match different data loggers and a selection of PicoScope oscillsocopes from the Pico range to build a flexible, expandable data acquisition system.

ZAR -1

PicoLog CM3

sku Product SKU:  PIC-LOGCM3

Typical applications

  • Mains current monitoring 
  • Three-phase load balancing
  • Long-term energy use recording
  • Energy and cost saving / ISO14001 monitoring

 

Screenshot of PicoLog 6 software in Windows, shows a graph of 3 current channels over time.

Flexible, expandable software included

Your PicoLog CM3 Current Data Logger is supplied with PicoLog 6 data logging software, available for Windows, macOS and Linux. With PicoLog 6 you can collect almost unlimited datasets, analyze them and then display the results in spreadsheet and graphical formats.

PicoLog 6 can record data from multiple PicoLog data loggers at the same time. This allows you to collect up to 60 channels of current. You can even mix and match different PicoLog loggers to record a mix of current, temperature, voltage and other signals.

The PicoSDK, a software development kit (SDK) is also supplied. PicoSDK contains a range of software drivers and example code that you can use to write your own software or to use your PicoLog CM3 with third-party software such as MATLAB, C,C++, C#, LabVIEW, Python, VB, VB.net to name but a few. PicoSDK can be found on GitHub.

Both PicoLog 6 and PicoSDK are provided free of charge and updates can be downloaded for free.

 

Image shows a blue and black current clamp with jaws closed

Non-invasive current clamps

The PicoLog CM3 measures current using industry-standard AC current clamps. These clamps have opening jaws so can be installed in seconds with no physical connection to high voltages. AC current clamps require no power supply or batteries so are ideal for long-term energy-use monitoring and logging.

Pico supply 200 A AC current clamps as standard. If you need to measure higher currents we will be happy to advise on suitable clamps for your application.

The PicoLog CM3 is available on its own so you can add your own current clamps or as a cost-saving kit with three 200 A clamps included.

 

Image shows the rear panel of the PicoLog CM3 showing Ethernet and USB ports

USB or Ethernet connection for local or remote logging

With both USB and Ethernet interfaces your PicoLog CM3 can be used in a variety of situations. If you need a portable instrument that can be used at various locations and is fast to set up and use, simply connect your laptop to the PicoLog CM3 by USB.  No external power supply is required as the CM3 is powered from the USB port.

Need to monitor a situation over a period of hours or days, or from a remote location? Plug your PicoLog CM3 into a spare port on your network and then access it remotely either from your LAN or over the internet. When using Ethernet the CM3 can be powered either by Power over Ethernet (PoE) or by using the USB connection just for power.

ZAR -1

Pico Data Loggers ADC-20 and ADC-24

sku Product SKU:  PIC-ADC-20|24

The ultimate in resolution and accuracy

With up to 24-bit resolution the ADC-20 and ADC-24 USB data loggers are able to detect small signal changes. Features such as true differential inputs, galvanic isolation and software-selectable sampling rates all contribute to a superior noise-free resolution and ensure that your measurements are reliable and accurate.

PicoLog 6  software – straightforward from the start

All Pico data acquisition products come complete with PicoLog 6. This powerful yet flexible data acquisition software allows you to collect, manipulate, analyze, display and export data. 

Designed from the ground up to be intuitive from the outset, PicoLog 6 allows you to set up the logger and start recording with just a few clicks of the mouse, whatever your level of data logging experience.

From here, starting a capture is simple: plug in the logger, add a channel, press Record, and you’re logging! PicoLog 6 also includes a number of additional features to cater for more advanced data logging needs. 

Flexible, multichannel data acquisition

Both the ADC-20 and ADC-24 feature true differential inputs for excellent noise rejection. To give you a very flexible system each differential input can also be configured as two single-ended inputs. With up to eight differential or 16 single-ended inputs on the ADC-24, this flexibility gives you complete control on what type of inputs you use. If you require more channels, you can use multiple PicoLog data loggers on the same PC.

With seven bipolar voltage ranges, the ADC-20 and ADC-24 are also flexible enough to be used with a wide range of sensors and signal types. There's also an external terminal board with screw terminals to allow you to quickly connect and disconnect different sensors.

Additionally, the ADC-24 has four configurable digital input/output channels that can be used to control alarms or other devices.

The flexibility of the ADC-20 and ADC-24 allows you to use these precision data loggers as an advanced multichannel data acquisition system with a low cost per channel.

No need for power supplies or batteries

The high-resolution ADC-20 and ADC-24 are powered directly by your PC — eliminating the need for batteries or a separate power supply, and making them ideal when you need a portable data logger.

The answer to your data acquisition needs

High resolution, true differential inputs, galvanic isolation, and selectable sampling rates combine to ensure that your measurements are always precise and accurate. Configurable inputs, digital inputs and outputs, and programmable voltage ranges give you a truly flexible answer to your data acquisition needs.

When you need the ultimate in high resolution and accuracy, the versatile ADC-20 and ADC-24 provide you with a portable answer with the performance and flexibility you need.

ZAR -1

PicoScope 4x24

sku Product SKU:  PIC-4x24

12 bit oscilloscopes with optional IEPE interface

  • 2 or 4 channels
  • Optional IEPE interface (for accelerometers, microphones etc)
  • 12 bit resolution
  • 20 MHz bandwidth
  • 32 MS buffer memory
  • Serial decoding and mask testing as standard
  • USB connected and powered
  • Windows, Mac and Linux software

The Picoscope 4424 and 4224 offer both a high resolution (12 bits) and a high DC accuracy (1%) making them an excellent choice for noise, vibration, precision electronics and mechanical analysis.

The optional IEPE interface (see below) allows for the direct connection and powering of industry standard accelerometers and microphones.

 

High resolution offers 16x more detail

The PicoScope 4224 and 4424 are 12-bit oscilloscopes that offer 16 times more vertical resolution than traditional 8-bit oscilloscopes (4096 vertical levels vs 256). The example shows how with a 12-bit oscilloscope (blue trace) you can zoom in to reveal details of the signal that are not visible on an 8-bit oscilloscope (black trace).

As well as the high vertical resolution, the 32 million sample buffer memory ensures a high horizontal resolution as well. You can collect long detailed captures without the sampling rate dropping.

Once you have seen high-resolution waveforms on a high-resolution PC monitor you will never want to use a traditional benchtop oscilloscope with its small display again.

As well as improved oscilloscope traces, high resolution offers big benefits when performing spectrum analysis offering an additional 20 dB dynamic range on the spectrum over 8-bit oscilloscopes. Signals that were previously hidden in the noise floor are now clearly visible and the spectrum becomes a powerful tool to track down the causes of noise.

 

IEPE Interface

The PicoScope 4224 is available with an optional internal IEPE (integrated circuit piezoelectric) interface allowing for the direct connection and powering of industry standard accelerometers and microphones.  

When disabled the channels can be used as normal oscilloscope inputs. When IEPE is enabled (each channel has independent control via software) the input is AC coupled and a 24 V, 4 mA signal is output to power external sensors.

The high resolution and dynamic range of the 4224 makes it ideal for use with accelerometers and microphones. Having the IEPE interface built in makes for a compact, portable solution.

 

Advanced display

PicoScope software dedicates almost all of the display area to the waveform. This ensures that the maximum amount of data is seen at once. The viewing area is much bigger and of a higher resolution than with a traditional benchtop scope.

With a large display area available, you can also create a customizable split-screen display, and view multiple channels or different views of the same signal at the same time. As the example shows, the software can even show multiple oscilloscope and spectrum analyzer traces at once. Additionally, each waveform shown works with individual zoom, pan, and filter settings for ultimate flexibility.

The PicoScope software can be controlled by mouse, touchscreen or keyboard shortcuts.

 

FFT spectrum analyzer

FFT spectrum analyzer

The spectrum view plots amplitude vs frequency and is ideal for finding noise, crosstalk or distortion in signals. The spectrum analyzer in PicoScope is of the Fast Fourier Transform (FFT) type which, unlike a traditional swept spectrum analyzer, can display the spectrum of a single, non-repeating waveform.

A full range of settings gives you control over the number of spectrum bands (FFT bins), window types, scaling (including log/log) and display modes (instantaneous, average, or peak-hold).

You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. A mask limit test can be applied to a spectrum for automated testing.

More information on Spectrum analyzer >>

 

Picoscope 4424

Signal integrity

Most oscilloscopes are built down to a price. PicoScopes are built up to a specification.

Careful front-end design and shielding reduces noise, crosstalk and harmonic distortion. Years of oscilloscope design experience can be seen in improved bandwidth flatness and low distortion.

We are proud of the dynamic performance of our products and, unlike most oscilloscope manufacturers, we publish our specifications in detail. The result is simple: when you probe a circuit, you can trust in the waveform you see on the screen.

 

usb oscilloscope with IEPE interface

Portability

Pico Technology oscilloscopes are small, light and portable. In the lab they take up the minimum of bench space while for the engineer on the move they are small enough to fit in a bag with your laptop.

The USB connection makes printing, copying, saving, and emailing your data from the field quick and easy. The high-speed USB interface allows fast data transfer, while USB powering removes the need to carry around a bulky external power supply, making the scope even more portable for the engineer on the move.

The PicoScope 4424, 4224 and 4224 IEPE are supplied with software, documentation and USB cable. For the 4224 and 4424 a kit also containing oscilloscope probes and a carry case is available.

ZAR -1

PicoLog 1000

sku Product SKU:  PIC-LOG1000-S

A DISTINGUISHED PEDIGREE

The PicoLog 1000 Series is the result of a distinguished lineage that goes back to the release of our first multichannel data logger — the ADC-11 — in 1993. The original ADC-11, and its successor the USB ADC-11, proved to be the perfect choice for users wanting a low–cost way to measure and record multiple signals. The PicoLog 1000 Series builds on this success to give you the same low-cost data acquisition but with greater power and performance. (Because the ADC-11 was so popular we’ve also added a USB ADC-11 compatibility mode which allows you to use your PicoLog 1000 logger as a direct replacement to the USB ADC-11.)

Data logger terminal board

AN EXPANDABLE MULTICHANNEL DATA ACQUISITION SYSTEM

The budget model PicoLog 1012 has 12 input channels and 10 bit resolution. The powerful PicoLog 1216 has 16 channels and 12 bit resolution. Need more channels? No problem. Using PicoLog you can connect up to 4 Pico data loggers to one PC — giving you a potential 64 channel PicoLog 1000 Series data acquisition system, or the ability to use your PicoLog 1000 logger with other devices such as the USB TC-08 Thermocouple Data Logger.

OPTIONAL TERMINAL BOARD

The optional terminal board has screw terminals to allow sensor wires to be attached to the data logger without soldering. The terminal board also has locations where you can fit resistors to offset and extend the input ranges of the logger.

16 channel picoscope

FAST AND ACCURATE

With 10 or 12-bit resolution and multiple sampling modes, a PicoLog 1000 Series logger will meet your data logging needs. The PicoLog 1000 Series has 3 sampling modes: Streaming mode allows channel voltage readings to be logged continuously at up to 100 kS/s, while block mode captures up to the full 1 MS/s  sample rate of the logger for a duration limited by the 8000 sample buffer, both these speeds applying to single-channel operation. The PicoLog application provides an extra mode, real-time continuous sampling, which provides averaged, time-accurate readings with automatic measurements at up to 1 kS/s on any number of channels.

ZAR -1

PicoScope 9300 Series

sku Product SKU:  PIC-9300-S

With up to 25 GHz bandwidth, the PicoScope 9300 sampling oscilloscopes address digital and telecommunications applications of 10 Gb/s and higher, microwave applications up to 25 GHz and timing applications with a resolution down to 64 fs. Optional 11.3 Gb/s clock recovery, optical to electrical converter or differential, deskewable time domain reflectometry sources (60 ps/7 V) complete a powerful, small-footprint and cost-effective measurement package.
 

Sampling Oscilloscopes to 25 GHz with TDR/TDT and Optical models

15 to 25 GHz electrical, 9.5 GHz optical, TDR/TDT, 2-channel and 4-channel, compact, portable, USB instruments.

These units occupy very little space on your workbench and are small enough to carry with your laptop for on-site testing, but that’s not all. Instead of using remote probe heads attached to a large bench-top unit, you can position the scope right next to the device under test. Now all that lies between your scope and the DUT is a short, low-loss coaxial cable. Everything you need is built into the oscilloscope, with no expensive hardware or software add-ons to worry about.

Key specifications

  • 15 TS/s (64 fs) sequential sampling
  • Up to 15 GHz prescaled, 2.5 GHz direct trigger and 11.3 Gb/s clock recovery
  • Industry-leading 16-bit 1 MS/s ADC and 60 dB dynamic range
  • Eye and mask testing to 16 Gb/s with up to 223–1 pattern lock
  • Intuitive, touch-compatible Windows user interface
  • Comprehensive built-in measurements, histogramming and editable data mask library
  • Integrated, differential, deskewable TDR/TDT step generator

Typical applications

  • Telecom and radar test, service and manufacturing
  • Optical fiber, transceiver and laser testing
  • RF, microwave and gigabit digital system measurements
  • Radar bands I, G, P, L, S, C, X, Ku
  • Precision timing and phase analysis
  • Digital system design and characterization
  • Eye diagram, mask and limits test to 10 Gb/s
  • Ethernet, HDMI 1, HDMI 2, PCI, SATA, USB 2.0, USB 3.0
  • TDR/TDT analysis of cables, connectors, backplanes, PCBs and networks
  • Optical fiber, transceiver and laser test
  • Semiconductor characterization

Remember: the price you pay for your PicoScope Sampling Oscilloscope is the price you pay for everything – we don’t charge you for software features or updates.

Migrating from the legacy PicoScope 9200 to the PicoScope 9300? 
Help me compare

The now broader range of 9300 models and bandwidths is designed to offer high compatibility and upgraded functionality to replace the successful but now obsolete 9200 series of 12 GHz sampling oscilloscopes. A detailed intercomparison and assistance to migration is provided here:

Migrating from the legacy PicoScope 9200 to the PicoScope 9300? Help me compare

 

ZAR -1

PicoScope-3000

PicoScope 3000 Series

sku Product SKU:  PIC-3000-S

PC Oscilloscopes & Mixed Signal Oscilloscopes

PicoScope 3000 mixed signal oscilloscopes

Power, portability and performance

PicoScope 3000 Series USB-powered PC oscilloscopes are small, light, and portable and can easily slip into a laptop bag while offering a range of high-performance specifications.

These oscilloscopes offer 2 or 4 analog channels and a built-in function / arbitrary waveform generator. MSO models add 16 digital channels. Key performance specifications:

  • 200 MHz analog bandwidth
  • 1 GS/s real-time sampling
  • 512 MS buffer memory
  • 100,000 waveforms per second
  • 16 channel logic analyzer (MSO models)
  • Arbitrary waveform generator
  • USB 3.0 connected and powered
  • Serial decoding and mask testing as standard
  • Windows, Linux and Mac software

Supported by the advanced PicoScope 6 software, these devices offer an ideal, cost-effective package for many applications, including embedded systems design, research, test, education, service, and repair.

deep memory oscilloscope showing zoom

High bandwidth and sampling rate

Despite a compact size and low cost, there is no compromise on performance with bandwidths up to 200 MHz.  This bandwidth is matched by a real-time sampling rate of up to 1 GS/s, allowing detailed display of high frequencies. For repetitive signals, the maximum effective sampling rate can be boosted to 10 GS/s by using Equivalent Time Sampling (ETS) mode.

Other oscilloscopes have high maximum sampling rates, but without deep memory they cannot sustain these rates on long timebases. The PicoScope 3000 Series offers memory depths up to 512 million samples, more than any other oscilloscope in this price range, which enables the PicoScope 3406D MSO to sample at 1 GS/s all the way down to 50 ms/ div (500 ms total capture time).

Managing all this data calls for some powerful tools. There’s a set of zoom buttons, plus an overview window that lets you zoom and reposition the display by simply dragging with the mouse or touchscreen. Zoom factors of several million are possible.  Other tools such as the waveform buffer, mask limit test, serial decode and hardware acceleration work with the deep memory making the PicoScope 3000 series some of the most powerful oscilloscopes on the market.

Mixed-signal capability / logic analyzer

The PicoScope 3000D Series Mixed-Signal Oscilloscopes include 16 digital inputs so that you can view digital and analog signals simultaneously.

The digital inputs can be displayed individually or in named groups with binary, decimal or hexadecimal values shown in a bus-style display. A separate logic threshold from –5 V to +5 V can be defined for each 8-bit input port. The digital trigger can be activated by any bit pattern combined with an optional transition on any input. Advanced logic triggers can be set on either the analog or digital input channels, or both to enable complex mixed-signal triggering.

The digital inputs bring extra power to the serial decoding options.  You can decode serial data on all analog and digital channels simultaneously, giving you up to 20 channels of data.  You can for example decode multiple SPI, I²C, CAN bus, LIN bus and FlexRay signals all at the same time!

Application note: Debugging an I²C Bus with a PicoScope Mixed–Signal Oscilloscope

Mixed Signal Oscilloscope / Logic Analyzer (roll over red circles for description)

 

CAN bus serial decoding

Serial bus decoding and protocol analysis

PicoScope can decode 1-WireARINC 429CAN & CAN-FDDCC, DMX512, Ethernet 10Base-T and 100Base-TX,  FlexRay, I²C, I²S, LIN, PS/2, MODBUSSENTSPIUART (RS-232 / RS-422 / RS-485), and USB 1.1 protocol data as standard, with more protocols in development and available in the future with free-of-charge software upgrades.

Graph format shows the decoded data (in hex, binary, decimal or ASCII) in a data bus timing format, beneath the waveform on a common time axis, with error frames marked in red. These frames can be zoomed to investigate noise or signal integrity issues.

Table format shows a list of the decoded frames, including the data and all flags and identifiers. You can set up filtering conditions to display only the frames you are interested in or search for frames with specified properties. The statistics option reveals more detail about the physical layer such as frame times and voltage levels. PicoScope can also import a spreadsheet to decode the data into user-defined text strings.

More information on Serial bus decoding and protocol analysis - overview >>

PicoScope arbitrary waveform generator

Arbitrary waveform and function generator

All PicoScope 3000D units have a built-in function generator (sine, square, triangle, DC level, white noise, PRBS etc.) on the front panel. PicoScope 3000D MSO models have the connector on the rear panel.

As well as basic controls to set level, offset and frequency, more advanced controls allow you to sweep over a range of frequencies. Combined with the spectrum peak hold option this makes a powerful tool for testing amplifier and filter responses.

Trigger tools allow one or more cycles of a waveform to be output when various conditions are met such as the scope triggering or a mask limit test failing.

A 14 bit 80 MS/s arbitrary waveform generator (AWG) is also included. AWG waveforms can be created or edited using the built-in AWG editor, imported from oscilloscope traces, or loaded from a spreadsheet.

More information on Arbitrary waveform generator (AWG) >>

Spectrum analyzer: Multiple spectrum views

FFT spectrum analyzer

The spectrum view plots amplitude against frequency and is ideal for finding noise, crosstalk or distortion in signals. The spectrum analyzer in PicoScope is of the Fast Fourier Transform (FFT) type which, unlike a traditional swept spectrum analyzer, can display the spectrum of a single, non-repeating waveform.

A full range of settings gives you control over the number of spectrum bands (FFT bins), window types, scaling (including log/log) and display modes (instantaneous, average, or peak-hold).

You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. A mask limit test can be applied to a spectrum and you can even use the AWG and spectrum mode together to perform swept scalar network analysis.

More information on Spectrum analyzer >>

oscilloscope front end shielding

Signal integrity

Most oscilloscopes are built down to a price. PicoScopes are built up to a specification.

Careful front-end design and shielding reduces noise, crosstalk and harmonic distortion. Years of oscilloscope design experience can be seen in improved bandwidth flatness and low distortion.

We are proud of the dynamic performance of our products, and unlike most oscilloscope manufacturers publish our specifications in detail. The result is simple: when you probe a circuit, you can trust in the waveform you see on the screen.

USB 3.0 PC oscilloscope

USB connectivity

The USB connection not only allows high-speed data acquisition and transfer, but also makes printing, copying, saving, and emailing your data from the field quick and easy. USB powering removes the need to carry around a bulky external power supply, making the kit even more portable for the engineer on the move.

PicoScope 3000 Series oscilloscopes feature a SuperSpeed USB 3.0 connection, making the already-optimized process of data transfer and waveform update rates even faster. Further benefits of a USB 3.0 connection include faster saving of waveforms and faster gap-free continuous streaming of up to 125 MS/s when using the SDK, while the scope is still backward-compatible with older USB systems.

ZAR -1

Pico TA386 Passive probe

sku Product SKU:  PIC-TA386

Passive oscilloscope probes

Our ergonomically designed passive oscilloscope probes are suitable for use with all major brands of oscilloscopes as well as the PicoScope range of USB Oscilloscopes. Passive probes don't require a power supply or batteries so are lightweight and easily portable.

Read our free guide: How to Tune x10 Oscilloscope Probes.

Passive oscilloscope probe: 200 MHz bandwidth 1:1/10:1 switchable, BNC

The TA386 is a passive switchable oscilloscope probe, with a bandwidth of 200 MHz. This probe is an upgraded version of our TA131 which includes many improvements to enhance durability, ease of use and performance, such as:

  • Redesigned probe tip allows removal and refitting of replacement tips
  • Replacement TA385 spring tips and TA384 rigid tips are available separately
  • Redesigned probe hook accessory fitting
  • Upgraded high durability probe cable

A passive oscilloscope probe with BNC connector with it's kit contents, cable coiled up.

ZAR -1

TA375 Passive probe

sku Product SKU:  PIC-TA375

Passive oscilloscope probes

Our ergonomically designed passive oscilloscope probes are suitable for use with all major brands of oscilloscopes as well as the PicoScope range of USB Oscilloscopes. Passive probes don't require a power supply or batteries so are lightweight and easily portable.

Read our free guide: How to Tune x10 Oscilloscope Probes.

Passive oscilloscope probe: 100 MHz bandwidth 1:1/10:1 switchable, BNC

The TA375 is a passive switchable oscilloscope probe, with a probe bandwidth of 100 MHz. This probe is an upgraded version of our TA132 which includes many improvements to enhance durability, ease of use and performance, such as:

  • Redesigned probe tip allows removal and refitting of replacement tips
  • Replacement TA385 spring tips and TA384 rigid tips are available separately
  • Redesigned probe hook accessory fitting
  • Upgraded high durability probe cable

A passive oscilloscope probe with BNC connector with it's kit contents, cable coiled up.

ZAR -1

PicoScope 2000 Series

sku Product SKU:  PIC-2000-S

USB oscilloscopes & mixed signal oscilloscopes

  • 2 channel, 4 channel and MSO models
  • 6 instruments in one
  • Ultra-compact design
  • Up to 100 MHz bandwidth
  • Up to 128 MS buffer memory
  • Decode 16 serial protocols as standard
  • USB connected and powered
  • Windows, Linux and Mac software

PicoScope 2000 Series 4-channel oscilloscope

Your complete test & measurement laboratory

You can use your PicoScope 2000 Series as an advanced oscilloscope, spectrum analyzer, function generator, arbitrary waveform generator and protocol decoder out of the box. Mixed signal models also add a 16 channel logic analyzer. A complete electronics lab in one compact, low-cost, USB-powered unit.

The PicoScope 2000A models deliver unbeatable value for money and are ideal for education, hobby and field service use. In the lab the low cost allows one scope per person rather than having to share.

The PicoScope 2000B models have the added benefits of deep memory (up to 128 MS), higher bandwidth (up to 100 MHz) and faster waveform update rates. PicoScope 2000B models give you the performance to carry out advanced analysis of your waveforms. They are ideal for design, debug and serial decoding.

The Configure Your Scope panel on the left gives a quick guide to the models, specifications and prices.

High end oscilloscope

Oscilloscope display showing zoom, rulers and measurements

High-end oscilloscope

At the heart of every PicoScope 2000 is an advanced oscilloscope which offers everything you would expect and much more besides:

  • 10,000 waveform circular buffer
  • Up to 80,000 waveforms per second update rate
  • Mask limit testing
  • Advanced math & filtering
  • Measurements with statistics
  • Advanced digital triggering 
  • Resolution enhancement to 12 bits

mixed signal pc oscilloscope (MSO)

Logic analyzer / mixed signal ability

The PicoScope 2000 Series includes mixed signal models that include 16 digital inputs so that you can view digital and analog signals simultaneously.

The digital inputs can be displayed individually or in named groups with binary, decimal or hexadecimal values shown in a bus-style display. A separate logic threshold from –5 V to +5 V can be defined for each 8-bit input port. The digital trigger can be activated by any bit pattern combined with an optional transition on any input. Advanced logic triggers can be set on either the analog or digital input channels, or both to enable complex mixed-signal triggering.

The digital inputs bring extra power to the serial decoding options.  You can decode serial data on all analog and digital channels simultaneously, giving you up to 18 channels of data.  You can for example decode multiple SPI, I²C, CAN bus, LIN bus and FlexRay signals all at the same time!

Mixed Signal Oscilloscope / Logic Analyzer (roll over red circles for description)

Serial bus decoding and protocol analysis

PicoScope can decodev 1-Wire, ARINC 429, CAN, DCC, DMX512, Ethernet,  FlexRay, I²C, I²S, LIN, PS/2, SENT, SPI, UART (RS-232 / RS-422 / RS-485), and USB 1.1 protocol data as standard, with more protocols in development and available in the future with free-of-charge software upgrades.

Multiple protocols can be captured and decoded, the only limit being the number of available channels (18 for MSO models). The ability to observe data flow across a bridge (such as CAN bus in, LIN bus out) is incredibly powerful.

The deep memory buffers make the PicoScope 2000B models ideal for serial decoding as it is possible to capture and decode many thousands of frames of data.

FFT spectrum analyzer

Increasing the number of points in a FFT to 1 million increases frequency resolution and reduces the noise floor.

FFT spectrum analyzer

The spectrum view plots amplitude against frequency, revealing details that would otherwise be hidden in an oscilloscope view. It is ideal for finding noise, crosstalk or distortion in signals.

You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. A mask limit test can be applied to a spectrum and you can even use the AWG and spectrum mode together to perform swept scalar network analysis.

With PicoScope 2000B models FFTs of up to 1 million points can be computed in milliseconds giving superb frequency resolution. Increasing the number of points in a FFT also lowers the noise floor revealing otherwise hidden signals.

PicoScope Arbitary Waveform Generator (AWG) editor

Arbitrary waveform generator (AWG) and function generator

All PicoScope 2000 Series oscilloscopes have a built-in function generator and arbitrary waveform generator (AWG) which output signals on a front panel BNC.

The function generator can produce sine, square, triangle and DC level waveforms, and many more besides, while the AWG allows you to import custom waveforms from data files or create and modify them using the built-in graphical AWG editor.

As well as level, offset and frequency controls, advanced options allow you to sweep over a range of frequencies. Combined with the advanced spectrum mode, with options including peak hold, averaging and linear/log axes, this creates a powerful tool for testing amplifier and filter responses.

PicoScope 2000B models have trigger options that allow one or more cycles of a waveform to be output when various conditions are met, such as the scope triggering or a mask limit test failing.

Frequency response analyzer / Bode plot

Frequency response analyzer / Bode plot

Download new features or write your own

The software development kit (SDK) allows you to write your own software and includes drivers for Microsoft Windows, Apple Mac (OS X) and Linux (including Raspberry Pi and BeagleBone).

Example code shows how to interface to third-party software packages such as Microsoft Excel, National Instruments LabVIEW and MathWorks MATLAB. 

There is also an active community of PicoScope users who share code and applications on the Pico forum and PicoApps section of the picotech.com web site. The Frequency Response Analyzer shown opposite is one of the most popular 3rd party applications.

ZAR -1

Pico TA384 rigid tips

sku Product SKU:  PIC-TA384

Passive oscilloscope probes

Our ergonomically designed passive oscilloscope probes are suitable for use with all major brands of oscilloscopes as well as the PicoScope range of USB Oscilloscopes. Passive probes don't require a power supply or batteries so are lightweight and easily portable.

Read our free guide: How to Tune x10 Oscilloscope Probes.

Replacement rigid probe tips, 5 pack

TA384 is a pack of 5 replacement rigid probe tips exclusively for TA375 and TA386 probes. Simply unscrew the probe tip fitted to the probe, and screw in a new tip. 

If replacement sprung probe tips are required for these probes, the TA385 pack of 5 sprung probe tips is also available.

Five replacement rigid tips lined up in a row

 

ZAR -1

Pico TA385 spring tips

sku Product SKU:  PIC-TA385

Passive oscilloscope probes

Our ergonomically designed passive oscilloscope probes are suitable for use with all major brands of oscilloscopes as well as the PicoScope range of USB Oscilloscopes. Passive probes don't require a power supply or batteries so are lightweight and easily portable.

Read our free guide: How to Tune x10 Oscilloscope Probes.

Replacement spring probe tips, 5 pack

TA385 is a pack of 5 replacement spring probe tips exclusively for TA375 and TA386 probes. Simply unscrew the probe tip fitted to the probe, and screw in a new tip. 

If replacement rigid probe tips are required for these probes, the TA384 pack of 5 rigid probe tips is also available.

ZAR -1

Pico 4824

PicoScope 4824A

sku Product SKU:  PIC-4824

High resolution, deep memory, 8 channel oscilloscope

8 Channel oscilloscope

  • 8 channels
  • 12 bit resolution
  • 20 MHz bandwidth
  • 256 MS buffer memory
  • High-performance arbitrary waveform generator
  • Advanced digital triggers
  • Serial bus decoding
  • SuperSpeed USB 3.0 interface
  • Windows, Mac and Linux software

The PicoScope 4824 is a low-cost, portable solution for multi-input applications. With 8 high-resolution analog channels you can easily analyze audio, ultrasound, vibration, power, and timing of complex systems. 

Despite its compact size, there is no compromise on performance. With a high 12-bit vertical resolution, bandwidth of 20 MHz, 256 MS buffer memory, and a fast sampling rate of 80 MS/s, the PicoScope 4824 has the power and functionality to deliver accurate results. It also features deep memory to analyze multiple serial buses such as UART, I2C, SPI, CAN and LIN plus control and driver signals.

8 channel oscilloscope waveform

Advanced display

PicoScope software dedicates almost all of the display area to the waveform. Using the display of your laptop or desktop the area is much bigger and of a higher resolution than with a traditional benchtop scope. This is a huge advantage when displaying 8 high-resolution channels.

With a large display area available, you can also create a customizable split-screen display, and view multiple channels or different views of the same signal at the same time. As the example opposite shows, the software can even show both oscilloscope and spectrum analyzer traces at once. Additionally, each waveform shown works with individual zoom, pan, and filter settings for ultimate flexibility.

The PicoScope software can be controlled by mouse, touchscreen or keyboard shortcuts.

High resolution offers 16x more detail

The PicoScope 4824 is a 12-bit oscilloscope that offers 16 times more vertical resolution than traditional 8-bit oscilloscopes (4096 vertical levels vs 256). The example shows how with a 12-bit oscilloscope (blue trace) you can zoom in to reveal details of the signal that are not visible on an 8-bit oscilloscope (black trace).

As well as the high vertical resolution, the 256 million sample buffer memory ensures a high horizontal resolution as well. You can collect long detailed captures without the sampling rate dropping.

Once you have seen high-resolution waveforms on a high-resolution PC monitor you will never want to use a traditional benchtop oscilloscope with its small display again.

As well as improved oscilloscope traces, high resolution offers big benefits when performing spectrum analysis offering an additional 20 dB dynamic range on the spectrum over 8-bit oscilloscopes. Signals that were previously hidden in the noise floor are now clearly visible and the spectrum becomes a powerful tool to track down the causes of noise.

deep memory oscilloscope showing zoom

Typical applications

The PicoScope 4824 mix of 8 channels, high resolution and deep memory makes it suitable for a wide range of applications that cannot be met by traditional benchtop oscilloscopes.

8 channels allows multiple power supply rails to be monitored at the same time, ideal for looking at power supply sequencing, balancing or quality. The high channel count allows the decoding of multiple different serial bus standards at the same time (CAN, LIN, FlexRay, I2C, SPI etc.)

12 bit resolution both for the oscilloscope and spectrum analyzer helps track down noise, analyze harmonics and measure distortion.

The 256 MS deep memory allows several seconds of capture at the full sampling rate (ideal for long captures of serial data or looking for glitches in power supplies). Managing all this data calls for some powerful tools, so zoom factors of several million are possible. Other tools such as the waveform buffer, mask limit test, serial decode and hardware acceleration work with the deep memory making the PicoScope 4824 one of the most powerful oscilloscopes on the market.

The compact size takes up little space on the bench and USB power makes the PicoScope 4824 ideal for those on the move.  For the first time you can carry an 8 channel oscilloscope in your laptop bag!

arbitrary waveform editor

Arbitrary waveform and function generator

The PicoScope 4824 has a built-in function generator (sine, square, triangle, DC level, white noise, PRBS and others) and arbitrary waveform generator.

As well as basic controls to set level, offset and frequency, more advanced controls allow you to sweep over a range of frequencies. Combined with the spectrum peak hold option this makes a powerful tool for testing amplifier and filter responses.

Trigger tools allow one or more cycles of a waveform to be output when various conditions are met such as the scope triggering or a mask limit test failing.

The 14-bit 80 MS/s arbitrary waveform generator (AWG) can be used to emulate sensor signals during product development, or to stress-test a design over a wide frequency range. AWG waveforms can be created or edited using the built-in AWG editor, imported from oscilloscope traces, or loaded from a spreadsheet.

More information on Arbitrary waveform generator (AWG) >>

Spectrum analyzer: Multiple spectrum views

FFT spectrum analyzer

The spectrum view plots amplitude against frequency and is ideal for finding noise, crosstalk or distortion in signals. The spectrum analyzer in PicoScope is of the Fast Fourier Transform (FFT) type which, unlike a traditional swept spectrum analyzer, can display the spectrum of a single, non-repeating waveform.

A full range of settings gives you control over the number of spectrum bands (FFT bins), window types, scaling (including log/log) and display modes (instantaneous, average, or peak-hold).

You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. A mask limit test can be applied to a spectrum and you can even use the AWG and spectrum mode together to perform swept scalar network analysis.

More information on Spectrum analyzer >>

oscilloscope signal integrity

Signal integrity

Most oscilloscopes are built down to a price. PicoScopes are built up to a specification.

Careful front-end design and shielding reduces noise, crosstalk and harmonic distortion. Years of oscilloscope design experience can be seen in improved bandwidth flatness and low distortion.

We are proud of the dynamic performance of our products and, unlike most oscilloscope manufacturers, we publish our specifications in detail. The result is simple: when you probe a circuit, you can trust in the waveform you see on the screen.

High-end features as standard

Buying a PicoScope is not like making a purchase from other oscilloscope companies, where optional extras considerably increase the price. With our scopes, high-end features such as serial decoding, mask limit testing, advanced math channels, segmented memory, and a signal generator are all included in the price.

To protect your investment, both the PC software and firmware inside the scope can be updated. Pico Technology have a long history of providing new features for free through software downloads. We deliver on our promises of future enhancements year after year, unlike many other companies in the field. Users of our products reward us by becoming lifelong customers and frequently recommending us to their colleagues.

ZAR -1

Fluke-710

Fluke 710

sku Product SKU:  FLK-710

PRODUCT OVERVIEW: FLUKE 710 MA LOOP VALVE TESTER

Smart Control Valve Testing is now easier than ever

The Fluke 710 Valve Testing Loop Calibrator is designed to enable users to perform quick, easy tests on HART smart control valves. Featuring built-in test procedures and an intuitive user interface, the 710 allows users to quickly and easily perform valve tests, while the valve test quick-check results provide at-a-glance diagnostics help you make maintenance decisions faster than ever. The valve health quick-check results let you know whether your valve is in good, marginal or in bad operating condition so you can quickly decide whether additional maintenance is necessary.

Valve testing and HART communication in a precision loop calibrator

With the 710 Valve Testing Loop Calibrator’s built in HART communication function, users can source a 4-20 mA signal to cause the smart control valve to move, while simultaneously interpreting the valve’s HART feedback signal to determine whether the valve is moving to the expected position. In addition to positional information, the measured pressure delivered from the valve’s internal I/P (which moves the valve) can be determined through the HART communication protocol.

The 710 has built-in test procedures that automatically increase and change the mA signal while monitoring the HART position and pressure feedback from the control valve, giving you a better overall picture of valve health at the simple push of a button.

Pre-configured valve tests, at-a-glance answers

Valve test routines built into the 710 include:

  • Manual testing; manually change the mA signal and view the HART position and pressure variable information
  • Full range ramping of the mA signal from 4 to 20 to 4 mA while recording the 0-100-0% position, or the pressures applied that move the valve from 0-100-0%
  • Stepping the mA signal on the input to the valve in steps and evaluating the valves response to the mA input changes
  • Speed tests to determine how fast the valve can open or close
  • Bump and partial stroke tests that help test valves over a portion of their range so they can be tested in a live process

ValveTrack™ Software enables further analysis and trending

Valve tests that are logged and recorded to memory in the 710 are available to upload to included ValveTrack™ analysis software.

ValveTrack™ software enables you to:

<ul">

  • Upload, print and plot logged valve tests taken in the field
  • Compare previous uploaded tests to recent tests
  • View valve test history by HART Tag ID
  • Export valve test data to CSV for additional analysis in Microsoft Excel®

Saving time, getting answers

In addition, the 710 offers:

  • Logging of HART data in the field. Once recorded by the 710 in the field, the ValveTrack™ software can upload the HART configuration of up to (20) HART devices in your plant and output data in either (.csv) or (.txt) format.
  • Data logged mA loop measurements and HART data can be recorded from a particular transmitter for troubleshooting and loop tuning. The data log feature offers selectable capture with recording intervals of 1 to 60 seconds and a logging capacity of 4910 records or 99 individual sessions. Each record contains the mA measurement and all four process variables.

Product Highlights

  • Valve test procedures that deliver Good, Marginal or Bad assessment of a control valve
  • Generic HART communication
  • Best-in-class mA accuracy at 0.01 % measurement or source value
  • Compact rugged design
  • Intuitive user interface with Quick-Set knob for fast setup, easy to use
  • 24 V DC loop power with mA measure mode (-25 % to 125 %)
  • Resolution of 1 μA on mA ranges and 1 mV on voltages ranges
  • Built in selectable 250 Ω resistor for HART communications
  • Simple two wire connection for all measurements
  • Auto shutdown to conserve battery life
  • Variable step and ramp time in seconds

HART communication

The Fluke 710 offers a built-in HART modem to communicate the following HART commands:

  • Read sensor PV information
  • Read PV output information
  • Read and write PV unit type, tag ID name, descriptor, and message
  • Read and write PV ranges (upper and lower)
  • Enter/exit fixed current mode
  • Set zero offset
  • Trim DAC zero (mA output 4 mA)
  • Trim DAC gain (mA output 20 mA)

HART Commands for Valves

The 710 includes these unique HART commands to support control valves:

  • Autotrim of valve controller

In addition, the Fluke 710 offers: 

  • Logging of HART data in the field. Once recorded by the 710 in the field, the ValveTrack™ software can upload the HART configuration of up to 20 HART devices in your plant and output data in either .csv or .txt format
  • Data-logged mA loop measurements and HART data can be recorded from a particular transmitter for troubleshooting and loop tuning. The data log feature offers selectable capture with recording intervals of 1 to 6 seconds and a logging capacity of 4910 records or 99 individual sessions. Each record contains the mA measurement and all four process variables.

ZAR -1

Fluke MDA 550 Promotion

Fluke MDA-550

sku Product SKU:  FLK-MDA-550

Simplify complex motor-drive troubleshooting with guided test setups and automated drive measurements that provide reliable, repeatable test results.

The Fluke  MDA 550 Motor-Drive Analysers save time and eliminate the hassle of setting up complex measurements, while simplifying the troubleshooting process for variable frequency drives. Simply select a test and the step-by-step guided measurements show you where to make voltage and current connections, while the preset measurement profiles ensure you will capture all the data you need for each critical motor-drive section—from the input to the output, the DC bus, and the motor itself. From basic to advanced measurements, the MDA-500 Series has you covered, and with a built-in report generator you can quickly and easily generate as-found, and as-left reports with confidence.

The  MDA-550 are the ideal portable motor-drive analysis test tools and can help safely locate and troubleshoot typical problems on inverter type motor-drive systems.

  • Measure key motor-drive parameters including voltage, current, DC Bus voltage level and AC ripple, voltage and current unbalance and harmonics (MDA-550), voltage modulation, and motor shaft voltage discharges (MDA-550).
  • Perform extended harmonics measurements to identify the effects of low and high order harmonics on your electrical power system.
  • Conduct guided measurements for motor-drive input, DC bus, drive output, motor input and shaft measurements (MDA-550) with graphical step-by-step voltage and current connection diagrams.
  • Use simplified measurement setup with preset measurement profiles to automatically trigger data collection based on the chosen test procedure.
  • Create reports quickly and easily that are perfect for documenting troubleshooting and collaborative work with others.
  • Measure additional electrical parameters with full 500 MHz oscilloscope, meter and recording capability for complete range of electrical and electronic measurement on industrial systems.

 

The Fluke MDA-510 and MDA-550 Motor Drive Analyzers use guided test measurements to make analysis easier than ever.

Drive input

Measure input voltage and current to quickly see whether values are within acceptable limits by comparing the variable frequency drive’s (VFD), also known as a variable speed drive (VSD) or adjustable speed drive (ASD), nominal rated voltage to the actual supplied voltage. Then, check the input current to determine if the current is within the maximum rating and the conductors are suitably sized. You can also check whether the harmonic distortion is within an acceptable level by visually inspecting the waveform shape or by viewing the harmonics spectrum screen (MDA-550) with total harmonic distortion and individual harmonics.

Voltage and current unbalance

Check the voltage unbalance at the input terminals of the frequency speed drive so you can ensure the phase unbalance is not too high (> 6-8 %), and that the phase rotation is correct. You can also check the current unbalance, as excessive unbalance may indicate a drive rectifier problem.

Extended harmonic measurements

Excessive harmonics are not just a threat to your rotating machines but also to other equipment connected to the electrical power system. The MDA-550 provides the ability to discover the harmonics of the motor-drive but can also discover the possible effects of inverter switching electronics. The MDA-550 has three harmonic ranges, 1st to 51st Harmonics, 1 to 9 kHz and 9 kHz to 150 kHz giving the ability to detect any harmonic pollution problems.

DC bus

In a motor-drive the conversion of AC to DC inside the drive is critical, having the correct voltage and adequate smoothing with low ripple is required for the best drive performance. High ripple voltage may be an indicator of failed capacitors or incorrect sizing of the connected motor. The record function of the MDA-500 Series can be used to check DC bus performance dynamically in the operating mode while a load is applied.

Drive output

Check the output of the inverter drive focusing both on voltage to frequency ratio (V/F), and voltage modulation. When high V/F ratio measurements are experienced, the motor may overheat. With low V/F ratios, the connected motor may not be able to provide the required torque at the load to sufficiently run the intended process.

Voltage modulation

Measurements of the Pulse Width Modulated signal are used to check for high voltage peaks which can damage motor winding insulation. The rise time or steepness of impulses is indicated by the dV/dt reading (rate of voltage change over time), this should be compared to the motor’s specified insulation. The measurements can also be used to measure switching frequency to identify whether there is a potential issue with electronic switching, or with grounding, where the signal floats up and down.

Motor input

Ensuring that voltage is being supplied at the motor input terminals is key, and the selection of cabling from drive to the motor is critical. Incorrect cabling selection can result in both drive and motor damage due to excessive reflected voltage peaks. Checking that the current present at the terminals is within the motor rating is important as over current condition could cause the motor to run hot, decreasing the life of the stator insulation which can result in the early failure of the motor.

Motor shaft voltage

Voltage pulses from a variable frequency drive can couple from a motor’s stator to its rotor, causing a voltage to appear on the rotor shaft. When this rotor shaft voltage exceeds the insulating capacity of the bearing grease, flashover currents (sparking) can occur, causing pitting and fluting of the motor bearing race, damage that can cause a motor to fail prematurely. The MDA-550 Series analyzers are supplied with carbon fiber brush probe tips that can easily detect the presence of destructive flashover currents, while the impulse amplitude and count of events will enable you to take action before failure occurs. The addition of this accessory and capability of the MDA-550 allows you to discover potential damage without investing in expensive permanently installed solutions.

Step-by-step guided measurements ensure you have the data you need, when you need it

The MDA-500 Series is designed to help you quickly and easily test and troubleshoot typical problems on three-phase and single-phase inverter type motor-drive systems. The on-screen information, and step-by-step setup guidance make it easy to configure the analyzer and get the drive measurements you need to make better maintenance decisions, fast. From power input to the installed motor, the MDA-500 provides the measurement capability for the fastest motor-drive troubleshooting.

 
  • Connection Diagram Drive Input

ZAR -1

IMG-FLK902FC

Fluke 902 FC True-RMS HVAC Clamp Meter

sku Product SKU:  FLK-902FC

Fluke 902 FC True-RMS HVAC Clamp Meter helps HVAC technicians work more efficiently on the work site.

The Fluke 902 FC Clamp Meter, with Fluke Connect wireless connectivity, can help HVAC technicians improve productivity in the field. The rugged dual-rated CAT III 600 V, CAT IV 300 V meter equips you to perform many essential HVAC system measurements: microamps for testing pilot light sensors; resistance up to 60 kΩ; AC current and AC/DC voltage; capacitance; and contact temperature, all with just one tool. Plus its small form factor makes it easy to hang on to and navigate in tight work spaces.

Part of the Fluke Connect wireless family

As part of the Fluke Connect family, the 902 FC can transmit measurements to a smartphone or tablet for later, detailed analysis. No need to write down the results. Trend and monitor measurements live on your phone screen, and upload those measurements to the cloud. Combine measurement data from multiple Fluke Connect test tools to create and share reports from the job site via email, and collaborate in real time with other colleagues with ShareLive™ video calls or email.

The 902 FC can also decrease the frequency of wearing personal protective equipment (PPE) when working on high voltage/current panels. Simply turn off the panel. Verify that it is de-energized using standard safety procedures. Place the clamp and synch it to a smartphone. Close the panel, reenergize it, and take measurements from a safe distance.

Other useful features:

  • Ergonomic design fits in your hand and can be used while wearing personal protective equipment
  • Large, easy-to-read backlit display improves readings in low light settings
  • Connects to your smartphone via Fluke Connect so you can read measurements at a safer distance
  • Measures AC current to 600 A and AC and DC voltage to 600 V
  • Measures capacitance to 1000 µF and DC current to 200 µA
  • Measures temperature from -10 °C to 400 °C (14 °F to 752 °F)
  • Offers True-RMS voltage and current measurements to accurately measure non-linear signals
  • Measures resistance to 60 kΩ
  • Offers Min/Max recording to capture variations automatically
  • Runs on two AA alkaline batteries

ZAR -1

Fluke 733 Promotion

Fluke 773 Milliamp Process Clamp Meter

sku Product SKU:  FLK-773

Save time by NOT breaking the loop on 4-20 mA signal measurements.

ARE YOU SPENDING TIME:

  • Taking mA measurements by removing a wire and breaking the loop
  • Calling the control room to isolate a loop
  • Testing analog input/output on a console
  • Troubleshooting devices with mA inputs and outputs
  • Repairing intermittent or erratic 4-20 mA loops
  • Going back to the shop to get extra tools

If you need more time in your busy day take a good look at the Fluke 773 mA Clamp Meters. It’s designed to save you time, and money, by eliminating time wasting activities. Now you can troubleshoot and repair 4-20 mA loops without breaking the loop or bringing down the system.

Here are some specific ways the Fluke 773 Clamp Meters will help you:

Milliamp Clamp Features

Application

How it saves time and money

Measure mA signals for PLC and control system analog I/O without breaking the loop.

Measures low level dc current

Correlate process indication with real physical value

Measure output signals from transmitters without breaking the loop

Maintain and troubleshoot process and automation equipment without breaking the loop

No disruption to the process

Detachable clamp with extension cable

Measurements in tight locations

Enables measurements in difficult situations

Source, simulate and measure mA signals in circuit (break the loop)

Confirm non-contact measurement. ve the next tool in hand for troubleshooting (source simulate)

Eliminates the need to return to the shop to get a loop calibrator for troubleshooting after finding a bad signal with non-contact measurement

Source and measure VDC

Troubleshoot voltage input and output devices.

Measure presence of 24V loop power. Measure 1 to 5 or 0 to 10V process signals. Test chart recorders

4 to 20 mA In/out

Dual channel mA source and measurement for troubleshooting

Source 4 to 20 mA signals into valves and mA signal conditioners and simultaneously measure 4 to 20 mA positioning output signals.

4 to 20 mA scaled output

Scaled mA output provides a mA signal output representative of the measured mA value

Connect a logging DMM and log the mA signal without breaking the loop

Loop power supply

Power a transmitter

Substitute testing of the installed 24V loop power supply. Power a transmitter and measure its mA output signal for troubleshooting.

Dual backlit display with both mA measurement and percent of 4 to 20 mA span

Clear measurement presentation

Allows quick measurement evaluation

Measurement Spotlight

Illuminates hard to see wires in dark enclosures

Measurement process is easier and quicker

Measure up to 99.9 mA range non-contact

Wide range of measurements

Measures 10 to 50 mA signals in older control systems

Automatic power off

After 15 minutes and 2 minute automatic off for backlight and spotlight

Saves battery life

 

ZAR 43470,0000