Online Buying Store
Request for Quote Store
{{minicart.wishlist.length}} {{minicart.cartList.length}}
You have no items in your shopping cart.
You have 1 item in your shopping cart.
{{multiCartItemsStr.replace('[COUNT]', minicart.cartList.length)}}
{{cartItem.ProductName}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
Qty: {{cartItem.Quantity | number : 2}}

Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Image Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Description Created
{{savedCart.Description}} {{savedCart.CreateDate | date : 'yyyy-MM-dd h:mm a'}}
SKU Product Name Unit Cost Qty Line Total
{{cartItem.ProductSku}} {{cartItem.ProductName}} {{cartItem.UnitCost | currency : 'R' : 2}} {{cartItem.Quantity | number : 2}} {{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your saved shopping cart.
You have no items in your wishlist.
Status Order No. Order Date Ship To Order Total Pay Total Balance
Bill Me Later Open Ready To Ship Shipped Picked Up Cancelled Incomplete On Hold Back Ordered Returned {{order.Status}}
{{order.OrderID}} {{order.OrderDate | date : 'yyyy-MM-dd'}} {{order.ShipFirstName}} {{order.ShipLastName}}, {{order.ShipAddress1}} {{order.ShipAddress2}}, {{order.ShipCity}}, {{order.ShipState}} {{order.ShipZipcode}} {{order.GrandTotal | currency : 'R' : 2}} {{order.PayTotal | currency : 'R' : 2}} {{order.GrandTotal - order.PayTotal | currency : 'R' : 2}}
Logo

Comtest Store RFQ

Grid View List View Sorting: Normal Sorting: Price Low to High Sorting: Price High to Low Sorting: New Arrivals Sorting: Brand A-Z Sorting: Brand Z-A
IMG-6630-7320-7320-7380

Fluke calibration 6330/7320/7340/7380

sku Product SKU:  FCAL-6330-7320-7340-7340

Fluke Calibration 6330

This bath delivers all the high temperatures you need up to 300 °C (572 °F). With stability and uniformity at 300 °C better than ±0.015 °C and ±0.020 °C respectively, calibrations can easily be performed at this high temperature with total uncertainty better than ±0.05 °C. At lower temperatures, stability and uniformity are even better.

The 6330 is only 12 inches wide and less than 19 inches tall, so it fits easily onto a benchtop without consuming precious space. An optional cart with casters and a storage area raises the 6330 to a convenient height when used on a floor and provides an extra cabinet for lab supplies. With built-in handles, it even lifts easily onto and off of its cart or benchtop. No matter where you want to use this bath—or even if you want to move it around—the 6330 gets there hassle-free.

Fluke Calibration 7320 and 7340

With an optional floor cart (including locking casters), your bath can easily be moved to any place you need it. (Available for the 6330, 7320, or 7340. Casters included on the 7380.

Also featuring large work areas, our Model 7320 and 7340 baths cover your needs for low-temperature calibrations. The 7320 covers a range from –20 °C to 150 °C and the 7340 reaches even colder temperatures to –40 °C. Below 0 °C, these baths maintain impressive stability of ±0.005 °C with uniformities better than ±0.006 °C. No utility bath performs as well as Fluke Calibration’s compact baths below 0 °C or at critical room and body temperatures—or even at important higher temperatures such as 100 °C and 122 °C.

Fluke Calibration 7380

For ultracold temperatures, the 7380 reaches –80 °C quickly and maintains two-sigma stability of ±0.006 °C when it gets there. The 7380 is a true metrology bath, not a chiller or circulator. With uniformity to ±0.008 °C, comparison calibration of temperature devices can be performed with high precision.

Each bath includes an RS-232 serial interface and our Model 9930 Interface-it software for controlling your bath from a PC. With a Fluke Calibration thermometer readout, such as a Black Stack, and our MET/TEMP II software, automated calibrations can run unattended.

Fluke Calibration doesn’t make chillers, circulators, or so-called utility baths, and utility bath manufacturers don’t make metrology baths. Use the right tools for your work and reap the best possible results. Baths from Fluke Calibration are the most stable and uniform of any you’ll find. They’ll give you results no other bath can.

ZAR -1

IMG-6-7109A-1

Fluke Calibration 6109A / 7109A Portable Calibration Baths

sku Product SKU:  FCAL-6109A/719A

Now there are portable calibration baths (Fluke Calibration 6109A & 7109A) designed with the process manufacturing professional in mind. Process manufacturing plants for pharmaceuticals, biotechnology, and food production utilize many sanitary temperature sensors that require regular calibration. Production must stop during temperature sensor calibration. Therefore, more calibration throughput means less plant downtime. And in businesses where even a few tenths of a degree Celsius can cost thousands of dollars in ruined product, temperature accuracy is crucial to maintaining quality.

The Fluke Calibration 6109A and 7109A Portable Calibration Baths are liquid baths that let process industry professionals calibrate four times more sanitary sensors per batch in less time and with twice the accuracy of other portable baths in this class. Larger than micro baths, up to four tri-clamp sanitary sensors fit easily into these baths for calibration at ± 0.1 °C temperature display accuracy. Throughput is even higher for sanitary RTDs with small or no flanges.

Two bath models cover a wide temperature range: 35 °C to 250 °C for the 6109A and -25 °C to 140 °C for the 7109A. Each model offers a “-P” version that includes process electronics for connecting an external reference probe.

Professionals working in clean process industries, including facilities managers, production engineers and calibration technicians, prefer these baths for a variety of reasons.

Facilities managers need to meet U.S. FDA and ISO cleanroom standards like the baths’ stainless steel casing that stands up to harsh cleaning solutions. They depend on the 6109A and 7109A to help maintain the accuracy of the plant’s temperature sensors, thus reducing the possibility of an expensive product batch loss.

Production engineers also appreciate the baths’ accuracy, which helps them control sensor out-of-tolerance conditions. Moreover, they prefer to use a bath designed specifically for cleanroom calibration throughput. No more need to make do with equipment designed for some other application.

Calibration technicians who perform calibrations on platforms, in crawl spaces, and other hard-to-reach parts of the plant enjoy the portability and cleanroom compatibility (i.e. easy to sanitize, don’t harbour bacteria) of these baths.

Global Fluke Calibration service and support ensure that your 6109A and 7109A baths will give you years of service that you can trust.

ZAR -1

FACL-9142-2

Fluke Calibration 9142 | 9143 | 9144

sku Product SKU:  FCAL-9142-3-4

Product overview: Fluke Calibration 9142 Field Metrology Well

Small dry wells for big field applications

The 9142, 9143, 9144 Field Metrology Wells extend high performance to the industrial process environment by maximizing portability, speed, and functionality with little compromise to metrology performance.

Field Metrology Wells are packed with functionality and are remarkably easy to use. They are lightweight, small, and quick to reach temperature set points, yet they are stable, uniform, and accurate. These industrial temperature loop calibrators are perfect for performing transmitter loop calibrations, comparison calibrations, or simple checks of thermocouple sensors. With the “process” option, there is no need to carry additional tools into the field. This optional built-in two-channel readout reads resistance, voltage, and 4–20 mA current with 24 volt loop power. It also has on-board automation and documentation. Combined, the three models (9142, 9143, and 9144—each with a “process” option) cover the wide range of –25 °C to 660 °C.

High performance for the industrial environment

Field Metrology Wells are designed for the industrial process environment and fast speed to temperature. They weigh less than 8.2 kg (18 lb) and have a small footprint, which makes them easy to transport.

Field environment conditions are typically unstable, having wide temperature variations. Each Field Metrology Well has a built-in gradient-temperature compensation (patent pending) that adjusts control characteristics to ensure stable performance in unstable environments. In fact, all specifications are guaranteed over the environmental range of 13 °C to 33 °C.

ZAR -1

IMG-5901

Fluke Calibration 5901 Triple Point of Water Cells

sku Product SKU:  FCAL-5901

Must-have, primary temperature standards

  • Easy-to-use, inexpensive standard with uncertainty better than ± 0.0001 °C
  • Four sizes and two shells (glass and quartz) to choose from
  • Isotopic composition of Vienna Standard Mean Ocean Water

The triple point of water (TPW) is not only the most accurate and fundamental temperature standard available, it’s also one of the least expensive and simplest to use.

Water cells are essential!

Triple point of water cells fill four critical purposes. First, they provide the most reliable way to identify unacceptable thermometer drift between calibrations—including immediately after a calibration if the thermometer has been shipped. Interim checks are critical for maintaining confidence in thermometer readings between calibrations. Second, they provide a critical calibration point with unequaled uncertainties.

Third, for users who characterize probes using ratios (that is, they use the ratios of the resistances at various ITS-90 fixed points to the resistance of the thermometer at the triple point of water, indicated by “W"), interim checks at the triple point of water allow for quick and easy updates to the characterizations of critical thermometer standards, which can be used to extend calibration intervals.

And lastly, the triple point of water is where the practical temperature scale (ITS-90) and the thermodynamic temperature scale meet, since the triple point of water is assigned the value 273.16 K (0.01 °C) by the ITS-90 and the Kelvin is defined as 1/273.16 of the thermodynamic temperature of the triple point of water.

Good triple point of water cells contain only pure water and pure water vapor. (There is almost no residual air left in them.) When a portion of the water is frozen correctly and water coexists within the cell in its three phases, the “triple point of water" is realized. Fluke Calibration water cells achieve this temperature with expanded uncertainties of less than 0.0001 °C and reproducibilities within 0.00002 °C.

In simple terms, water cells are made from just glass and water, but there’s much more to it than that!

For starters, that’s not just any water in there.

ZAR -1

FCAL-9118-Front

Fluke Calibration 9118A Thermocouple Calibration Furnace

sku Product SKU:  FCAL-9118A

Seven key features set the 9118A apart from other high-temperature calibration furnaces:

1. WIDE TEMPERATURE RANGE SPANNING MOST HIGH-TEMPERATURE APPLICATIONS

Standards and guidelines such as AMS 2750 and EURAMET cg-8 require that a thermocouple be calibrated over the full temperature range in which it is used. The 9118A temperature range of 300 °C to 1200 °C covers most high-temperature applications.

2. FLEXIBLE CONFIGURATION FOR CALIBRATING A WIDE RANGE OF THERMOCOUPLE TYPES

The 9118A furnace can be operated with or without an isothermal block, which increases calibration workload that can be performed with a single furnace:

  • Tube furnace configuration (without isothermal block): Base-metal thermocouples are often sheathed in formable materials such as braided fiberglass or PTFE. During calibration, they are bundled around a reference thermometer, held together with fiberglass cord or tape, and inserted into a tube furnace.
  • Isothermal block configuration: Metal- or ceramic-sheathed thermocouples are generally constructed with noble-metal thermoelements and therefore have higher calibration accuracy requirements. The isothermal block, which accommodates up to four 6.35 millimeter probes, improves heat transfer and temperature stability. This better equalizes the temperature between the reference probe and the UUT, which lowers measurement uncertainty compared to calibration without a block.

The furnace configuration can be quickly changed by selecting the calibration parameters stored in the controller for the desired configuration and inserting or removing the alumina ceramic isothermal block.

3. BEST-IN-CLASS TEMPERATURE STABILITY AND UNIFORMITY FOR CALIBRATION ACCURACY

Axial and radial uniformity, as well as constant temperature stability over time, are key factors that contribute to accurate thermocouple calibrations.

To minimize axial temperature gradients, three actively controlled heater zones compensate for temperature differentials between the central zone and the front and rear zones. Type-S thermocouples, which are less susceptible to drift than other types, are used for zone control and cutout. Axial temperature uniformity when using the isothermal block is ± 0.2 °C over a 60 mm (2.4 in) zone from full immersion at 1200 °C.

Radial (hole-to-hole) uniformity is ± 0.25 °C at 1200 °C when using the isothermal block, and ± 0.5 °C over a 14 mm (0.6 in) diameter at the center of the furnace tube without a block. 

When using the isothermal block, temperature stability is ± 0.1 °C or better over the full temperature range of the furnace.

 No other calibration furnace in its class comes close to this level of performance for both modes of operation. 

4. AUTOMATED SETPOINT CONTROL FOR IMPROVED LAB PRODUCTIVITY

A proprietary programmable controller, available in nine languages (English, Chinese, French, German, Japanese, Korean, Portuguese, Spanish, and Russian), enables technicians to automate setpoint temperature control for up to eight setpoint temperatures, the temperature ramp rate, and the time duration the furnace controls at each setpoint.

Automation and data collection can be further enhanced when the Fluke 1586A Super-DAQ is connected to the 9118A furnace through the RS-232 interface. The Super-DAQ can be programmed to control the furnace's setpoint temperatures and collect data for all sensors under test once the furnace has stabilized to within parameters defined by the user. After data has been collected at the first programmed temperature, the Super-DAQ will advance the furnace to the remaining programmed temperatures, collecting data at each setpoint. Once the test has been configured and started, the technician can walk away to work on other activities. 

5. NON-METALLIC BLOCK HELPS MINIMIZE THERMOCOUPLE CONTAMINATION

Calibration furnaces with metallic blocks can contaminate thermocouples, causing their accuracy to drift over time. To minimize the risk of contamination, the furnace well and isothermal block of the 9118A are constructed of non-metallic, ceramic alumina. This eliminates the need to protect the thermocouples under test with costly ceramic sleeving—reducing cost of ownership.

6. DEEP IMMERSION DEPTH TO SUPPORT MOST THERMOCOUPLE CALIBRATIONS

Industry standards such as AMS2750 recommend calibrating thermocouples at their normal working depth of insertion. The 9118A immersion depth is 365 mm (14.4 in) when using the isothermal block and 350 mm (13.8 in) to the central point of the furnace without a block. This immersion depth is adequate for most of thermocouple calibrations. The 40 mm x 700 mm (1.6 in x 27.6 in) open-ended furnace tube can also be useful when calibrating multi-junction thermocouples or when sample testing spools of thermocouple wire.

 7. DYNAMIC HEATER CONTROL AND CUTOUTS FOR RELIABILITY AND SAFETY

The 9118A controls the heater power level below 100% to prevent the heater elements from overheating—improving heater reliability and lifetime. Redundant over-temperature cutouts are built into the 9118A to ensure safe operation of the furnace. These include over-temperature, chassis thermostat, fan fault, control thermocouple fault, and user programmable cutouts.

 

ZAR -1

Fluke Calibration 155X Stik Thermometer

sku Product SKU:  FCAL-155X Stik

Finally, a digital substitute for your mercury-in-glass thermometers! Accurate and repeatable to ± 0.05 °C over its full range, the 1551A/1552A “Stik Thermometer is the new “gold standard" of industrial temperature calibration. Whether working outdoors in environments where potentially explosive gases may be present or on the floor of a processing plant, the intrinsically-safe, battery operated, portable reference thermometer is designed to go where you work.
 

Features at a glance

  • Accuracy of ± 0.05 °C (± 0.09 °F) over full range
  • Intrinsically safe (ATEX and IECEx compliant)
  • Two models to choose from (-50 °C to 160 °C or -80 °C to 300 °C)
  • User-configurable temperature Trend/Stability indicator
  • Display temperature in °C or °F
  • Optional data logging to internal memory
  • 300-hour battery life
  • Percent battery-life and low-battery indicator
  • NVLAP-accredited, NIST-traceable calibration included

Thermometer probe and digital readout combined into one unit

The stainless steel probe and digital readout are fixed together and calibrated as a system. The accuracy specification is easy to understand since it includes all uncertainty components, including drift, for up to one year1. The large backlit LCD display rotates 90° degrees making it easy to read from any angle. A user-configurable stability/trend indicator lets you know when your temperature is stable enough to record an accurate measurement. A user-settable auto-off function extends typical battery life to three hundred hours. A low-battery indicator and stop-measure function prevent erroneous measurements from being made due to low battery life. A simple three-point calibration function allows you to easily and accurately calibrate the “Stik" Thermometer. Data logging to internal memory of up to 10,000 time-stamped measurements is optionally available.

Why calibrate process temperature sensors?

Because temperature greatly effects the accuracy of a volumetric measurement, process manufacturers of chemical, pharmaceutical, food or petroleum products require accurate temperature measurements—especially for processes where quality or custody transfer are regulated by government agencies. Since all temperature sensors are subject to drift with time, regular calibration or verification against a reliable reference thermometer is required. Finding a reference thermometer that is accurate, repeatable and robust, however, can be challenging.

What’s wrong with my reference thermometer?

Industrial reference thermometers available on the market today, such as mercury-in-glass thermometers (or “ASTM thermometers") and portable electronic thermometers are useful, but both come with inherent problems. Although accurate and repeatable, mercury thermometers are fragile. The risk of a mercury spill poses potential hazards to the environment and to the health of personnel. Many of the United States and European Union countries have already banned their use in industrial applications. Some organizations have replaced their mercury thermometers with more durable portable electronic thermometers, only to discover that the RTD probes lack the repeatability and dependability required of a legitimate reference thermometer.

The best alternative to mercury thermometers

The Fluke “Stik" Thermometer is accurate, stable and durable, making it the best alternative to mercury thermometers and existing electronic thermometers. The thin-film RTD sensor incorporates the same characteristics of other premium reference thermometers designed by Hart Scientific, but it is more robust and less susceptible to drift. Accuracy and repeatability, however, are not sacrificed for improved durability.

Using a glass-stem mercury- or spirit-filled thermometer at different immersion depths, or at significantly different ambient temperatures from which it was calibrated, may require the application of emergent-stem corrections that can be tedious but necessary to calculate an accurate measurement. This isn’t required with the “Stik" Thermometer. The sensor of the 1551A Ex requires a minimum immersion depth of only seven centimeters (2.8 inches), with no appreciable effect on the measured temperature due to heat loss through stem conduction. Some digital thermometers can become less accurate when used outside a narrow range of ambient temperatures. This isn’t the case for the “Stik" Thermometer. Your measurement remains accurate in ambient temperatures from -10 degrees to 50 degrees celsius (14 degrees to 122 degrees fahrenheit). With a superior probe design combined with electronic functions that assist accurate measurement, the “Stik" Thermometer surpasses the capabilities of other digital thermometers and is the perfect substitute for your mercury thermometers. 1In order to minimize sensor drift, the probe should always be protected from mechanical shock.

Five reasons to replace mercury thermometers

  1. Since the “Stik" Thermometer does not contain mercury, it is not subject to government-imposed bans. Government agencies worldwide have either banned or are seeking to ban the use and transportation of industrial mercury thermometers—this seems to be a growing trend.
  2. The stainless steel probe sheath of the “Stik" Thermometer is far more robust than the glass stem of a mercury thermometer and better suited for industrial environments. And since the “Stik" thermometer does not contain mercury, the risk of an accidental mercury spill is eliminated.
  3. When considering cost of ownership, a digital thermometer is less expensive than a mercury thermometer. With a mercury thermometer, you either invest in equipment or you hire out to clean up after a mercury spill.
  4. Mercury thermometers cannot be adjusted after calibration. The actual temperature must be calculated by applying corrections to the measured temperature. This costs time and is susceptible to calculation error. A digital thermometer does the math for you—the displayed temperature accurately represents the actual measured temperature.
  5. Emergent-stem corrections may also be required if the mercury thermometer is not used under the same conditions under which it was calibrated. A digital thermometer doesn’t require that you match calibration conditions to achieve an accurate measurement. You’re only required to meet the minimum immersion requirements—which is only seven centimeters (2.8 inches) in the case of the 1551A Ex.

ZAR -1