Request for Quote Store
Online Buying Store
{{minicart.wishlist.length}} {{minicart.cartList.length}}
You have no items in your shopping cart.
You have 1 item in your shopping cart.
{{multiCartItemsStr.replace('[COUNT]', minicart.cartList.length)}}
{{cartItem.ProductName}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
Qty: {{cartItem.Quantity | number : 2}}

Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Image Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Description Created
{{savedCart.Description}} {{savedCart.CreateDate | date : 'yyyy-MM-dd h:mm a'}}
SKU Product Name Unit Cost Qty Line Total
{{cartItem.ProductSku}} {{cartItem.ProductName}} {{cartItem.UnitCost | currency : 'R' : 2}} {{cartItem.Quantity | number : 2}} {{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your saved shopping cart.
You have no items in your wishlist.
Status Order No. Order Date Ship To Order Total Pay Total Balance
Bill Me Later Open Ready To Ship Shipped Picked Up Cancelled Incomplete On Hold Back Ordered Returned {{order.Status}}
{{order.OrderID}} {{order.OrderDate | date : 'yyyy-MM-dd'}} {{order.ShipFirstName}} {{order.ShipLastName}}, {{order.ShipAddress1}} {{order.ShipAddress2}}, {{order.ShipCity}}, {{order.ShipState}} {{order.ShipZipcode}} {{order.GrandTotal | currency : 'R' : 2}} {{order.PayTotal | currency : 'R' : 2}} {{order.GrandTotal - order.PayTotal | currency : 'R' : 2}}
Logo

Comtest Store RFQ

Grid View List View Sorting: Normal Sorting: Price Low to High Sorting: Price High to Low Sorting: New Arrivals Sorting: Brand A-Z Sorting: Brand Z-A

PG7601 Piston Gauge

sku Product SKU:  FCL-PG7601

PG7000 PISTON GAUGE LINE FEATURES REFERENCE LEVEL PRESSURE STANDARDS OFFERING A UNIFIED SOLUTION FROM VACUUM TO 500 MPA

  • State-of-the-art primary pressure standards for the lowest uncertainty levels
  • Unified solution from vacuum to 500 MPa
  • Outputs fully validated reference pressures in real time
  • Intuitive local operator interface
  • Manual, semi-automated and fully automated configurations

The PG7000 Series calibration standards are based on the fundamental principle of mass loaded onto a piston to apply a known force to a known effective area

Integrated piston-cylinder modules
Each PG7000 piston-cylinder is an integrated metrological assembly that includes the critical piston-cylinder mounting components. All of the mechanical parts that affect piston cylinder metrology are associated with the individual piston-cylinder, rather than being common parts of the piston gauge platform, enabling the user to:

  • Change ranges (piston-cylinders) in seconds, without using tools.
  • Handle and interchange piston-cylinders without exposing critical surfaces to contamination.
  • Protect the piston-cylinder from damage due to accidental shock or impact when handling.
  • Improve measurement reproducibility by avoiding frequent assembly/disassembly of mounting components.
  • Improve piston-cylinder mounting design by allowing each mounting system to be optimized for a piston-cylinder size and range.

Mass loading concentricity
The number of independent parts between the piston and mass load has been reduced to two—the piston cap and the mass loading bell. The piston head is effectively made part of the piston by machining it after installation concentrically to the piston within ± 20 microns.

Integrated electronics, software and remote interfacing
The electronics for monitoring all ambient and instrument conditions and functions are integrated into the PG7000 platform. RS-232 and IEEE 488 interfaces are included for remote communication. The system power supplies are also contained in the terminal to remove their heat source from the PG platform. For local operation, the user interacts with the PG7000 through a keypad and alphanumeric display on a compact terminal, allowing rapid, intuitive operation.

On-board measurement of operating conditions
PG7000 includes integrated on-board measurement of all the ambient and operating conditions needed to calculate pressure within tolerance, including relative humidity, barometric pressure, ambient temperature, piston-cylinder temperature, and reference vacuum. Individual measurements can be observed in real time, both locally through the PG terminal and remotely over the RS-232 or IEEE 488 interface. Verification and recalibration of the on-board sensors is supported by embedded software.

Monitoring piston behavior
PG7000 measures and provides real time indication of piston position, drop rate, rotation rate, and rotation decelaration. Piston position is measured on the LVDT principle, with a ring on the inside of the mass loading bell acting as the armature. Rotation rate is measured optically by a sensor in the mounting post, which detects the movement of a notched ring on the inside of the mass loading bell. Both measurement systems are completely non-interfering, with no influence on the free movement of the piston in any axis.

Ready/not ready indication
The “ready/not ready" indication provides the operator with a clear “go/no go" indication of when an in-tolerance measurement can be made. It is based on testing for a variety of operating conditions, including piston position, piston fall rate, piston rotation rate, piston rotation deceleration, piston temperature rate of change and vacuum reference (when applicable). A ready condition is indicated when all conditions fall within specific limits. The limits for the various ready/not ready criteria can be customized by the user if desired.

Piston near-float detection
One of the most tedious aspects of operating a conventional piston gauge is adjusting pressure to float the piston. The piston lifts suddenly and without warning at the exact pressure corresponding to the mass loaded on the piston. Finding that point without overshooting requires slow and cautious pressure control. PG7000 makes it easier to float the piston with a piston preloading system, which provides advance warning that the pressure is near the point where the piston will leave end of stroke. The preloading system only affects the piston when it is at end of stroke; it does not interfere with the free movement of the piston when it is floating.

Intelligent piston rotation
PG7000 is the first commercially available piston gauge to provide monitoring of rotation rate and decay in rotation rate. These measurements are used to assure that pressure readings are always made within limits. This relieves the operator of rotation rate monitoring responsibility and replaces subjective operator judgment with objective measurement.

Storage and shipping containers
The PG7000 piston gauge platform and mass set are packaged in heavy duty, weather proof, molded transit cases with custom inserts to provide optimum protection. PG7000 piston-cylinders modules are delivered in compact, virtually indestructible PVC bullet cases.

Advanced pressure generation and control components
All PG7000 pressure accessories are designed to increase the efficiency and ergonomics of piston gauge operation. These include manual, semi-automated and fully automated options to quickly and easily generate pressure and float the piston at the set point.

COMPASS® for Pressure calibration assistance software
COMPASS software sets up records for the units under test (UUT), defines and associates test procedures with UUTs, runs tests, acquires reference and test data, produces standard and custom calibration reports. All reference, UUT and test data is collected and stored in a database and standard delimited files. COMPASS can manage any kind of test from manual operator control and logging of test data to fully automated, unattended test execution.

A unified solution from vacuum to 500 MPa
The PG7000 line of piston gauges covers the complete range of pressure from very low absolute and differential in gas, up to 500 MPa (75 000 psi) in oil. While several piston gauge platforms and specialized accessories may be needed to cover different ranges and media, a consistent user interface and operational principles are maintained throughout the line. In most cases, complete gas and oil calibration capability can be achieved with just two PG platforms, four piston-cylinder modules and one mass set. Maintaining consistency from system to system makes them easier to learn and to use. Maintenance costs are reduced by minimizing the number of metrological elements to be supported.

PG7000 Piston Cylinder Modules
The piston-cylinder defines effective area and is the piston gauge’s principal metrological element. The piston-cylinder’s intrinsic characteristics and how it is mounted and exploited are the keys to piston gauge performance.

PG7000 piston-cylinders are manufactured by Fluke Calibration using proprietary production techniques that result in pistons and cylinders whose typical shape is within less than 0.2 micron from ideal geometry.

Pure gas operated piston-cylinders use large diameters and very small annular gaps to minimize gas species and operating mode effects and to maximize piston float times. For example, the typical annular gap of a 35 mm gas operated piston-cylinder is less than 1 micron. Oil operated piston-cylinders use small diameters to reduce the quantity of mass needed to cover the typical high pressure range.

All Type 7000 pistons and cylinders are made of tungsten carbide. Each PG7000 piston-cylinder is a complete, integrated metrological assembly that includes the critical piston-cylinder mounting components for improved metrological performance. All Type 7000 piston-cylinders use free deformation mounting systems in which the cylinder is allowed to deform under the influence of applied pressure, without O-rings or seals along the cylinder length. For higher pressure gas assemblies, a new mounting system, negative free deformation, applies the measured pressure uniformly along the full length of the cylinder. This reduces deformation under pressure, so piston drop rates remain low even at high operating pressures, while avoiding the unpredictable strain points of conventional reentrant designs.

PG7000 Mass Sets
Masses loaded on the piston are accelerated by gravity to apply a known force on the piston against which the defined pressure is balanced.

A PG7000 manual mass set is made up of main masses of 10 kg or 5 kg, fractionary masses in 5-2-2-1 progression from 0.5 kg to 0.1 kg, and a trim mass set with masses from 50 kg to 0.01 g. Any desired mass value within the mass set range can be loaded to 0.01 g. All main and fractionary masses are machined from solid, nonmagnetic stainless steel and adjusted to their nominal values in the mass without cavities or trimming hardware which can reduce mass stability over time. Individual masses are comfortable to handle, with angled lifting surfaces on the edge of each mass and special mass trays that assist in orderly loading and unloading.

A PG7000 automated mass set is composed of main mass discs of 6.2 or 10 kg each and a set of tubular masses in binary progression from 0.1 to 3.2 or 6.4 kg.

A pneumatically driven automated mass handling accessory (AMH) loads requested mass values in increments of 0.1 kg. The AMH and mass set are easily removed to access the piston-cylinder module when necessary.

ZAR -1

molstic-L Mounting Systems

sku Product SKU:  FCL-molstic-L

molstics provide a quick connector input for convenient connection to the gas supply. This is followed by a 2 micron (0.5 micron for low flow) filter to protect the downstream components. Then, an adjustable regulator sets and regulates optimum molbloc upstream pressure and protects the molbox transducers against accidental overpressure. The regulator range supports all standard molbloc operating pressure ranges. A bellows shut-off valve, just before the molbloc, allows the gas supply to be shut-off for configuration changes and/or system leak checking.

Special cradles support the molbloc(s). A connection and pads are provided downstream of the molbloc for mounting the MFC (mass flow controller), another device under test, or the optional metering valve kit for manual flow control.

Single channel molstics are available to accommodate single molblocs. Dual channel models allow two molblocs to be mounted simultaneously to switch between two different molbloc ranges without changing hardware or to take advantage of molbox1+'s capability to run two molblocs in parallel.

There are low, mid and high flow versions of molstic. Low flow molstics use a unique, very high stability pressure regulator and minimize dead volumes. They are required for effective use of 2E2-L and lower molblocs and can be used up to the 1E3-L molbloc size. The mid flow molstics cover the ranges of all the molblocs from as low 2E2-L up to the 3E4-L. The high flow molstic is required for the 1E5-L (100 slm) molbloc and supports that molbloc only.

 

ZAR -1

molbox RFM Reference Flow Monitor

sku Product SKU:  FCL-molbox RFM

molstics provide a quick connector input for convenient connection to the gas supply. This is followed by a 2 micron (0.5 micron for low flow) filter to protect the downstream components. Then, an adjustable regulator sets and regulates optimum molbloc upstream pressure and protects the molbox transducers against accidental overpressure. The regulator range supports all standard molbloc operating pressure ranges. A bellows shut-off valve, just before the molbloc, allows the gas supply to be shut-off for configuration changes and/or system leak checking.

Special cradles support the molbloc(s). A connection and pads are provided downstream of the molbloc for mounting the MFC (mass flow controller), another device under test, or the optional metering valve kit for manual flow control.

Single channel molstics are available to accommodate single molblocs. Dual channel models allow two molblocs to be mounted simultaneously to switch between two different molbloc ranges without changing hardware or to take advantage of molbox1+'s capability to run two molblocs in parallel.

There are low, mid and high flow versions of molstic. Low flow molstics use a unique, very high stability pressure regulator and minimize dead volumes. They are required for effective use of 2E2-L and lower molblocs and can be used up to the 1E3-L molbloc size. The mid flow molstics cover the ranges of all the molblocs from as low 2E2-L up to the 3E4-L. The high flow molstic is required for the 1E5-L (100 slm) molbloc and supports that molbloc only.

 

ZAR -1

Fluke Calibration E-DWT Electronic Deadweight Tester

sku Product SKU:  FCAL-E-DWT

E-DWT-H breaks new ground, improving the hydraulic pressure calibration process. E-DWT-H is an electronic calibrator designed to replace mechanical, piston-cylinder and weight based deadweight testers. It’s a lighter, easier-to-use deadweight tester alternative that is at home in the lab or instrument shop, as well as in the field performing in-situ calibrations and tests. This complete hydraulic pressure calibration system combines the convenience and precision of continuous, realtime electronic pressure measurement with the simple and direct operation of high quality operator controlled pressure generation hardware. E-DWT-H one year measurement uncertainty is ± 0.02 % of reading with ranges up to 30,000 psi. It can be configured to provide this uncertainty from its full scale down to 1 % of its range. Built-in pressure generation and control hardware allow the operator to fill and prime the system under test and generate and precisely adjust pressure throughout the range with ease.

Broad workload coverage 
The E-DWT-H has the operational versatility to calibrate and test a broad range of pressure measuring instruments including:

  • Analog gauges
  • Transducers
  • Calibrators
  • Sensors
  • Transmitters

 

AutoTest™ lets E-DWT operators quickly define test points and adjust all of the range-dependent settings with a single function. 
The resolution and stability test used by the RPM4-E-DWT are set according to the range of the device under test. The upper limit setting is also set and provides range-based warnings and overpressure protection. While running AutoTests, the operator is prompted to set each sequential test point and test data is stored in the RPM4-E-DWT for recall or download. Typical test setup is quick and easy, but more complex tests can also be stored and reused.

Deadweight tester performance with digital measurement convenience 
E-DWT-H offers precision, low measurement uncertainty and the stability over time of a conventional deadweight tester without the inconveniences associated with the piston-cylinders, weights, hand pumps, and interconnecting plumbing.

  • No weights to load and unload or regularly send out for calibration
  • No need to know and correct for local gravity or ambient temperature
  • No piston-cylinder changes; switch Q-RPT ranges in seconds
  • Not sensitive to level or vibration
  • Able to set and read any pressure value exactly, no minimum increment limited by smallest available masses
  • Operates in any unit of measure while deadweight tester is typically limited to the pressure unit stamped on the mass
  • Perfect for applications that require setting a nominal pressure precisely on the device under test and measuring it, such as analog gauge calibration
  • On-board, AutoTest calibration routines and data acquisition
  • Interfaceable with a PC or laptop to allow for automated data acquisition
  • Two year calibration interval supported at measurement uncertainty of ± 0.025% of reading.
  • Easily recalibrated without crossfloating. Automated calibration of E-DWT-H is possible using COMPASS® for Pressure software.

 

Versatility to cover a broad workload in a variety of environments 
The E-DWT-H is at home in metrology and calibration labs, on the production floor or in the field. It operates with Sebacate calibration fluid, mineral oil, Skydrol® and other liquids. An optional battery/charger pack supports up to eight hours of operation away from line power.

All the features you expect in today’s state-of-the-art instruments, including:

Accuracy and performance 

  • One-year measurement uncertainty is ± 0.02% of reading from 10% to 100% with one Q-RPT, and from 1% to 100% with two Q-RPTs
  • Low torque variable volume allows for pressure generation up to 200 MPa (30,000 psi) with minimal physical effort
  • Separate fine adjustment tool for maximum, superfine control resolution
  • User defined resolution and ready limits enable user to optimize performance based on DUT specifications
  • High pressure isolation valve and pressure relief valve protect the low pressure reference transducer from over pressure when high pressure reference transducer is active

Ease of use

  • AutoRange feature optimizes measurement and safety features for the specific range of the instrument being calibrated
  • Simple rezeroing while vented at atmospheric pressure
  • Simple, objective pressure “ready/not ready indicator with user adjustable criteria to ensure repeatable results among operators
  • Not dependent on local gravity or ambient temperature
  • Sets and reads any pressure value directly in any unit of measure, without moving weights
  • Built-in priming system to fill system with test fluid and purge unwanted air to assure smooth operation
  • Optional foot switch accessory allows hands-free data collection when running AutoTests

Portability

  • Rechargeable battery pack option for eight hours of field operation
  • Everything to set, adjust and read pressure in one compact, transportable package
  • Optional shipping/carrying case with handles and wheels allows for easy transport to field application
  • Proven rugged and weatherproof design with room for accessories.

 

 

Automation

  • RS232 interface allows for real time automated data collection and customized report generation using DHI’s COMPASS® for Pressure calibration software



Free upgrades

  • Flash memory for simple and free embedded software upgrades from


www.dhinstruments.com

 

 

Automate data collection and manage calibration assets with COMPASS® for Pressure software

E-DWT can run stand-alone tests and collect test data. Test data can be downloaded over the RPM4-E-DWT’s RS232 interface. 

The RPM4-E-DWT’s RS232 interface can also be used to run the E-DWT with COMPASS® for Pressure software or user developed software. 

COMPASS® for Pressure software is universal pressure calibration software for the laboratory, which can be used to run simple or complex tests with multiple instruments. The user can create his/her own calibration report, and data can be exported to Fluke MET/CAL® Plus Calibration Management Software.

The support you need, when you need it 
DHI’s calibration, testing and repair services are dedicated to satisfying your needs quickly and at a fair cost while maintaining the unmatched level of quality that is our trademark.

DHI’s calibration laboratories are accredited by the American Association for Laboratory Accreditation (A2LA) for conformance to ISO Guide 17025. 

As a Fluke company, DHI has access to global calibration and repair facilities to keep your hardware in top working order. 

If you need training for yourself or your staff, DHI offers a broad range of classes including: the principles and practices of pressure calibration, advanced pressure metrology, gas flow calibration using a DHI molbloc/molbox system, set up and operation of COMPASS® for Pressure calibration assistance software, and much more.

Fluke’s commitment to support provides additional benefits as well, including invitations to software user group meetings and conferences, periodic email bulletins and a pressure and flow newsletter

ZAR -1

molstic-S Mounting System

sku Product SKU:  FCL-molstic-S

A key benefit of its modular design is that molstic-S can be used for testing devices in either the upstream or downstream position. The optional, adjustable DUT stand (P/N 401934) accommodates large DUTs that do not fit on the molstic-S.

molstic-S is available in either 1/2 inch or 1/4 inch system plumbing sizes. The 1/4 inch size is dedicated to the molbloc-S elements designated 1E2-S and lower, and the 1/2 inch size is for the 2E2-S through 2E3-S elements. All molstic-S platforms come with integrated flow shut-off/metering valves. This allows for system leak testing and provides a means of flow control (if required by DUT type). Optional high resolution metering valve kits are available for use with the 1/4 inch molstic-S in order to obtain finer flow control capability.

MOLSTIC-S USAGE

Because molbloc-S operates in the critical flow regime, test devices that have flow control capability must be installed upstream of the molbloc-S in order to control flow.

Devices that are to be calibrated at atmospheric pressure are generally installed downstream of the molbloc-S. molstic-S is built modularly in order to provide this flexibility.

Inlet gas supply pressure regulation is vitally important in order to protect the molbox pressure transducers. Therefore, it is recommended that the molstic-S Supply Only molstic be used upstream of test devices that have flow control capability and that the pressure reducing regulator option be installed on the molstic-S when calibrating devices that operate at atmospheric pressure. An optional back pressure regulator can be installed on the molstic-S to provide control of an upstream DUTs downstream pressure.

molstic-S™ provides an engineered solution to the practical issues of mounting molbloc-S® mass flow elements, connecting a gas supply, regulating the operating pressure and connecting the device under test (DUT). A filter is included on the 1/4 inch molstic-S to protect the smaller molbloc-S elements from contamination. Highest quality components are integrated into a convenient, compact, modular assembly to assure optimum molbloc®/molbox™ performance.

The single channel molstic-S is designed to accommodate one molbloc-S element. The dual channel allows two molbloc-S elements to be simultaneously mounted, allowing use of two ranges without changing hardware during a test. In addition, the outlet of the two molbloc-S elements can be plumbed in parallel using the downstream tee assembly (P/N 401884) in order to obtain additional flow range capacity when using a two-channel molbox1+.

 

ZAR -1