Request for Quote Store
Online Buying Store
{{minicart.wishlist.length}} {{minicart.cartList.length}}
You have no items in your shopping cart.
You have 1 item in your shopping cart.
{{multiCartItemsStr.replace('[COUNT]', minicart.cartList.length)}}
{{cartItem.ProductName}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
Qty: {{cartItem.Quantity | number : 2}}

Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Image Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Description Created
{{savedCart.Description}} {{savedCart.CreateDate | date : 'yyyy-MM-dd h:mm a'}}
SKU Product Name Unit Cost Qty Line Total
{{cartItem.ProductSku}} {{cartItem.ProductName}} {{cartItem.UnitCost | currency : 'R' : 2}} {{cartItem.Quantity | number : 2}} {{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your saved shopping cart.
You have no items in your wishlist.
Status Order No. Order Date Ship To Order Total Pay Total Balance
Bill Me Later Open Ready To Ship Shipped Picked Up Cancelled Incomplete On Hold Back Ordered Returned {{order.Status}}
{{order.OrderID}} {{order.OrderDate | date : 'yyyy-MM-dd'}} {{order.ShipFirstName}} {{order.ShipLastName}}, {{order.ShipAddress1}} {{order.ShipAddress2}}, {{order.ShipCity}}, {{order.ShipState}} {{order.ShipZipcode}} {{order.GrandTotal | currency : 'R' : 2}} {{order.PayTotal | currency : 'R' : 2}} {{order.GrandTotal - order.PayTotal | currency : 'R' : 2}}
Logo

Comtest Store RFQ

Grid View List View Sorting: Normal Sorting: Price Low to High Sorting: Price High to Low Sorting: New Arrivals Sorting: Brand A-Z Sorting: Brand Z-A
MIC-9611B

Microchip Technology 9611B

sku Product SKU:  MIC-9611B-02

The 9611B switch and distribution system is an intelligent switching, monitoring and distribution system, packaged in a 1U rack-mount chassis.
The 9611B can be set up to distribute a wide range of signal formats; low noise sine waves, IRIG timecodes or pulse formats from either one of two inputs to all twelve outputs. The 9611B allows the user to deploy one model type to support multiple signaling formats which lowers support and logistics costs.
The 9611B provides for both manual and auto-switching signal distribution. When in auto-switching mode, the 9611 will detect any input or output failure based on the signal type being propagated. In the Auto mode, any input failure causes the unit to switch from Primary to Secondary source. Alarms will be indicated by all user interfaces including the front panel and Command Line Interface

 User Interfaces 

The 9611B is controlled through two user interfaces: front panel controls and indicators, and a command line interface (CLI) over a RS-232 serial port connection. 

Front Panel Controls and Indicators 

The 9611B processes two signal inputs (A and B). Either input may be designated primary and the other as secondary. In auto mode, the unit will automatically switch from primary to secondary in the event that the primary input fails. There are three push buttons (input A, auto, and input B) that allow the input mode to be selected. Pressing input A or input B will force the selected input to be sent to all channels to use the selected input. Pressing auto will activate the automatic switchover mode. The twelve LEDs, numbered one through twelve, are either green to indicate that the channel signal is present and active or red to indicate that the channel signal has failed.

 When any alarm (A, B, or 1–12) is set, the alarm indicator turns from green (normal) to red (alarm). Once the failure is remedied, the alarm can be deactivated by pressing the alarm pushbutton, or issuing a command over the CLI. If the alarm is cleared, all alarm indicators return to the normal green color. 

Command Line Interface 

The 9611B instrument has a serial port interface. Communication between the instrument is achieved by running a communications program on a PC and connecting the RS-232 serial ports of the PC and 9611B through a serial cable.

 Certifications 

  • CE (compliant with RoHS 3 with Exemptions 
  • Emissions tests: EN 55032:201/AC:2013; KN 55032:2012; CISPR 32:2012; FCC Part 15 Subpart B (per ANSI C63.4:2014); Industry Canada ICES-003 Issue 6, January 2016; VCCI V-3/2015.04 and V-4/2012.04, A-0125, for a Class A Device; AUS/NZ. 
  • Immunity tests: EN 55024:2010; KN 55035:2012; CISPR 24:2010 

Safety 

  • UL: 62368-1 
  • CSA C22.2 NO. 62368-1 
  • IEC/EN 62368-1 

 

 

ZAR -1

MFC-CB Control Box

sku Product SKU:  FCL-MFC-CB

GAS MASS FLOW CONTROLLER AND FLOW METER CONTROL BOX

MFC-CB is a compact and versatile, stand alone unit for setting and reading analog mass flow controller (MFC) and mass flow meter (MFM) instruments. Its front panel keypad and display make it suitable for manual, bench top operation. It also integrates into automated, computer controlled systems using its RS-232 or IEEE-488 interface.

MFC-CB is the standard analog voltage and current setting and measuring component in Fluke Calibration molbox RFM™ flow calibration systems. It can also be useful as a stand alone device in a variety of measurement and test systems that use an analog mass flow controller or mass flow meter.

MFC-CB is a stand alone control unit for setting and reading voltage and current to and from MFCs and MFMs on two channels simultaneously. An optional MFC Switchbox allows switching between up to five devices on each channel that can all be continuously powered.

A 4 x 4 keypad and 2 x 20 character display support local operation. Standard RS-232 and IEEE-488 interfaces allow remote communication. An additional RS232 interface (COM2), is available for pass through communications to another device.

Current measurements are made by dropping the voltage over a precision 250 ohm resistor.

The set point output is automatically corrected based on an independent sense line measurement at the device being set.

MFC-CB uses MFC profiles as a convenient way to support advanced features. MFC profiles specify electrical signal and flow range allowing MFC-CB to support set point entry and measurement display in electrical, % FS or flow units. In addition, two units of measure can be displayed simultaneously and the sum, difference and ratio of the two control channels can be determined. MFC gas conversion factors can also be entered and applied automatically.

  • Set and read gas mass flow controller and mass flow meter instruments
  • Set and read 0 to 5 V or 4 to 20 mA on two (2) channels simultaneously
  • Complete front panel local control and remote operation via RS-232 and IEEE-488 interfaces
  • Includes advanced features such as two (2) channel sum, difference and ratio
  • Displays in V, mA, % FS and flow units
  • Handles gas conversion (K) factors automatically
  • Switch each channel between five (5) channels using an MFC Switchbox™
  • Common look, feel and protocol with other molbloc/ molbox™ flow products
  • Compatible with COMPASS® for molbox software to set up automated molbloc/molbox based flow systems

ZAR -1

IMG-5901

Fluke Calibration 5901 Triple Point of Water Cells

sku Product SKU:  FCAL-5901

Must-have, primary temperature standards

  • Easy-to-use, inexpensive standard with uncertainty better than ± 0.0001 °C
  • Four sizes and two shells (glass and quartz) to choose from
  • Isotopic composition of Vienna Standard Mean Ocean Water

The triple point of water (TPW) is not only the most accurate and fundamental temperature standard available, it’s also one of the least expensive and simplest to use.

Water cells are essential!

Triple point of water cells fill four critical purposes. First, they provide the most reliable way to identify unacceptable thermometer drift between calibrations—including immediately after a calibration if the thermometer has been shipped. Interim checks are critical for maintaining confidence in thermometer readings between calibrations. Second, they provide a critical calibration point with unequaled uncertainties.

Third, for users who characterize probes using ratios (that is, they use the ratios of the resistances at various ITS-90 fixed points to the resistance of the thermometer at the triple point of water, indicated by “W"), interim checks at the triple point of water allow for quick and easy updates to the characterizations of critical thermometer standards, which can be used to extend calibration intervals.

And lastly, the triple point of water is where the practical temperature scale (ITS-90) and the thermodynamic temperature scale meet, since the triple point of water is assigned the value 273.16 K (0.01 °C) by the ITS-90 and the Kelvin is defined as 1/273.16 of the thermodynamic temperature of the triple point of water.

Good triple point of water cells contain only pure water and pure water vapor. (There is almost no residual air left in them.) When a portion of the water is frozen correctly and water coexists within the cell in its three phases, the “triple point of water" is realized. Fluke Calibration water cells achieve this temperature with expanded uncertainties of less than 0.0001 °C and reproducibilities within 0.00002 °C.

In simple terms, water cells are made from just glass and water, but there’s much more to it than that!

For starters, that’s not just any water in there.

ZAR -1