Online Buying Store
Request for Quote Store
{{minicart.wishlist.length}} {{minicart.cartList.length}}
You have no items in your shopping cart.
You have 1 item in your shopping cart.
{{multiCartItemsStr.replace('[COUNT]', minicart.cartList.length)}}
{{cartItem.ProductName}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
Total: {{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
Qty: {{cartItem.Quantity | number : 2}}

Item Qty Total
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}} x {{cartItem.UnitCost | currency : 'R' : 2}}
{{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Subtotal {{minicart.cartTotals.SubTotal | currency : 'R' : 2}}
Image Item Qty Total
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}} x {{cartItem.UnitCost | currency : 'R' : 2}}
{{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Description Created
{{savedCart.Description}} {{savedCart.CreateDate | date : 'yyyy-MM-dd h:mm a'}}
SKU Product Name Unit Cost Qty Line Total
{{cartItem.ProductSku}} {{cartItem.ProductName}} {{cartItem.UnitCost | currency : 'R' : 2}} {{cartItem.Quantity | number : 2}} {{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your saved shopping cart.
You have no items in your wishlist.
Status Order No. Order Date Ship To Order Total Pay Total Balance
Bill Me Later Open Ready To Ship Shipped Picked Up Cancelled Incomplete On Hold Back Ordered Returned {{order.Status}}
{{order.OrderID}} {{order.OrderDate | date : 'yyyy-MM-dd'}} {{order.ShipFirstName}} {{order.ShipLastName}}, {{order.ShipAddress1}} {{order.ShipAddress2}}, {{order.ShipCity}}, {{order.ShipState}} {{order.ShipZipcode}} {{order.GrandTotal | currency : 'R' : 2}} {{order.PayTotal | currency : 'R' : 2}} {{order.GrandTotal - order.PayTotal | currency : 'R' : 2}}
Logo

Comtest Paid Store

Grid View List View Sorting: Normal Sorting: Price Low to High Sorting: Price High to Low Sorting: New Arrivals Sorting: Brand A-Z Sorting: Brand Z-A
PicoScope-3000

PicoScope 3000 Series

sku Product SKU:  PIC-3000-S

PC Oscilloscopes & Mixed Signal Oscilloscopes

PicoScope 3000 mixed signal oscilloscopes

Power, portability and performance

PicoScope 3000 Series USB-powered PC oscilloscopes are small, light, and portable and can easily slip into a laptop bag while offering a range of high-performance specifications.

These oscilloscopes offer 2 or 4 analog channels and a built-in function / arbitrary waveform generator. MSO models add 16 digital channels. Key performance specifications:

  • 200 MHz analog bandwidth
  • 1 GS/s real-time sampling
  • 512 MS buffer memory
  • 100,000 waveforms per second
  • 16 channel logic analyzer (MSO models)
  • Arbitrary waveform generator
  • USB 3.0 connected and powered
  • Serial decoding and mask testing as standard
  • Windows, Linux and Mac software

Supported by the advanced PicoScope 6 software, these devices offer an ideal, cost-effective package for many applications, including embedded systems design, research, test, education, service, and repair.

deep memory oscilloscope showing zoom

High bandwidth and sampling rate

Despite a compact size and low cost, there is no compromise on performance with bandwidths up to 200 MHz.  This bandwidth is matched by a real-time sampling rate of up to 1 GS/s, allowing detailed display of high frequencies. For repetitive signals, the maximum effective sampling rate can be boosted to 10 GS/s by using Equivalent Time Sampling (ETS) mode.

Other oscilloscopes have high maximum sampling rates, but without deep memory they cannot sustain these rates on long timebases. The PicoScope 3000 Series offers memory depths up to 512 million samples, more than any other oscilloscope in this price range, which enables the PicoScope 3406D MSO to sample at 1 GS/s all the way down to 50 ms/ div (500 ms total capture time).

Managing all this data calls for some powerful tools. There’s a set of zoom buttons, plus an overview window that lets you zoom and reposition the display by simply dragging with the mouse or touchscreen. Zoom factors of several million are possible.  Other tools such as the waveform buffer, mask limit test, serial decode and hardware acceleration work with the deep memory making the PicoScope 3000 series some of the most powerful oscilloscopes on the market.

Mixed-signal capability / logic analyzer

The PicoScope 3000D Series Mixed-Signal Oscilloscopes include 16 digital inputs so that you can view digital and analog signals simultaneously.

The digital inputs can be displayed individually or in named groups with binary, decimal or hexadecimal values shown in a bus-style display. A separate logic threshold from –5 V to +5 V can be defined for each 8-bit input port. The digital trigger can be activated by any bit pattern combined with an optional transition on any input. Advanced logic triggers can be set on either the analog or digital input channels, or both to enable complex mixed-signal triggering.

The digital inputs bring extra power to the serial decoding options.  You can decode serial data on all analog and digital channels simultaneously, giving you up to 20 channels of data.  You can for example decode multiple SPI, I²C, CAN bus, LIN bus and FlexRay signals all at the same time!

Application note: Debugging an I²C Bus with a PicoScope Mixed–Signal Oscilloscope

Mixed Signal Oscilloscope / Logic Analyzer (roll over red circles for description)

 

CAN bus serial decoding

Serial bus decoding and protocol analysis

PicoScope can decode 1-WireARINC 429CAN & CAN-FDDCC, DMX512, Ethernet 10Base-T and 100Base-TX,  FlexRay, I²C, I²S, LIN, PS/2, MODBUSSENTSPIUART (RS-232 / RS-422 / RS-485), and USB 1.1 protocol data as standard, with more protocols in development and available in the future with free-of-charge software upgrades.

Graph format shows the decoded data (in hex, binary, decimal or ASCII) in a data bus timing format, beneath the waveform on a common time axis, with error frames marked in red. These frames can be zoomed to investigate noise or signal integrity issues.

Table format shows a list of the decoded frames, including the data and all flags and identifiers. You can set up filtering conditions to display only the frames you are interested in or search for frames with specified properties. The statistics option reveals more detail about the physical layer such as frame times and voltage levels. PicoScope can also import a spreadsheet to decode the data into user-defined text strings.

More information on Serial bus decoding and protocol analysis - overview >>

PicoScope arbitrary waveform generator

Arbitrary waveform and function generator

All PicoScope 3000D units have a built-in function generator (sine, square, triangle, DC level, white noise, PRBS etc.) on the front panel. PicoScope 3000D MSO models have the connector on the rear panel.

As well as basic controls to set level, offset and frequency, more advanced controls allow you to sweep over a range of frequencies. Combined with the spectrum peak hold option this makes a powerful tool for testing amplifier and filter responses.

Trigger tools allow one or more cycles of a waveform to be output when various conditions are met such as the scope triggering or a mask limit test failing.

A 14 bit 80 MS/s arbitrary waveform generator (AWG) is also included. AWG waveforms can be created or edited using the built-in AWG editor, imported from oscilloscope traces, or loaded from a spreadsheet.

More information on Arbitrary waveform generator (AWG) >>

Spectrum analyzer: Multiple spectrum views

FFT spectrum analyzer

The spectrum view plots amplitude against frequency and is ideal for finding noise, crosstalk or distortion in signals. The spectrum analyzer in PicoScope is of the Fast Fourier Transform (FFT) type which, unlike a traditional swept spectrum analyzer, can display the spectrum of a single, non-repeating waveform.

A full range of settings gives you control over the number of spectrum bands (FFT bins), window types, scaling (including log/log) and display modes (instantaneous, average, or peak-hold).

You can display multiple spectrum views alongside oscilloscope views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. A mask limit test can be applied to a spectrum and you can even use the AWG and spectrum mode together to perform swept scalar network analysis.

More information on Spectrum analyzer >>

oscilloscope front end shielding

Signal integrity

Most oscilloscopes are built down to a price. PicoScopes are built up to a specification.

Careful front-end design and shielding reduces noise, crosstalk and harmonic distortion. Years of oscilloscope design experience can be seen in improved bandwidth flatness and low distortion.

We are proud of the dynamic performance of our products, and unlike most oscilloscope manufacturers publish our specifications in detail. The result is simple: when you probe a circuit, you can trust in the waveform you see on the screen.

USB 3.0 PC oscilloscope

USB connectivity

The USB connection not only allows high-speed data acquisition and transfer, but also makes printing, copying, saving, and emailing your data from the field quick and easy. USB powering removes the need to carry around a bulky external power supply, making the kit even more portable for the engineer on the move.

PicoScope 3000 Series oscilloscopes feature a SuperSpeed USB 3.0 connection, making the already-optimized process of data transfer and waveform update rates even faster. Further benefits of a USB 3.0 connection include faster saving of waveforms and faster gap-free continuous streaming of up to 125 MS/s when using the SDK, while the scope is still backward-compatible with older USB systems.

ZAR 16017,0000

PicoScope 9300 Series

sku Product SKU:  PIC-9300-S

With up to 25 GHz bandwidth, the PicoScope 9300 sampling oscilloscopes address digital and telecommunications applications of 10 Gb/s and higher, microwave applications up to 25 GHz and timing applications with a resolution down to 64 fs. Optional 11.3 Gb/s clock recovery, optical to electrical converter or differential, deskewable time domain reflectometry sources (60 ps/7 V) complete a powerful, small-footprint and cost-effective measurement package.
 

Sampling Oscilloscopes to 25 GHz with TDR/TDT and Optical models

15 to 25 GHz electrical, 9.5 GHz optical, TDR/TDT, 2-channel and 4-channel, compact, portable, USB instruments.

These units occupy very little space on your workbench and are small enough to carry with your laptop for on-site testing, but that’s not all. Instead of using remote probe heads attached to a large bench-top unit, you can position the scope right next to the device under test. Now all that lies between your scope and the DUT is a short, low-loss coaxial cable. Everything you need is built into the oscilloscope, with no expensive hardware or software add-ons to worry about.

Key specifications

  • 15 TS/s (64 fs) sequential sampling
  • Up to 15 GHz prescaled, 2.5 GHz direct trigger and 11.3 Gb/s clock recovery
  • Industry-leading 16-bit 1 MS/s ADC and 60 dB dynamic range
  • Eye and mask testing to 16 Gb/s with up to 223–1 pattern lock
  • Intuitive, touch-compatible Windows user interface
  • Comprehensive built-in measurements, histogramming and editable data mask library
  • Integrated, differential, deskewable TDR/TDT step generator

Typical applications

  • Telecom and radar test, service and manufacturing
  • Optical fiber, transceiver and laser testing
  • RF, microwave and gigabit digital system measurements
  • Radar bands I, G, P, L, S, C, X, Ku
  • Precision timing and phase analysis
  • Digital system design and characterization
  • Eye diagram, mask and limits test to 10 Gb/s
  • Ethernet, HDMI 1, HDMI 2, PCI, SATA, USB 2.0, USB 3.0
  • TDR/TDT analysis of cables, connectors, backplanes, PCBs and networks
  • Optical fiber, transceiver and laser test
  • Semiconductor characterization

Remember: the price you pay for your PicoScope Sampling Oscilloscope is the price you pay for everything – we don’t charge you for software features or updates.

Migrating from the legacy PicoScope 9200 to the PicoScope 9300? 
Help me compare

The now broader range of 9300 models and bandwidths is designed to offer high compatibility and upgraded functionality to replace the successful but now obsolete 9200 series of 12 GHz sampling oscilloscopes. A detailed intercomparison and assistance to migration is provided here:

Migrating from the legacy PicoScope 9200 to the PicoScope 9300? Help me compare

 

ZAR 231477,0000

PicoLog 1000 Series

sku Product SKU:  PIC-LOG1000-S

A DISTINGUISHED PEDIGREE

The PicoLog 1000 Series is the result of a distinguished lineage that goes back to the release of our first multichannel data logger — the ADC-11 — in 1993. The original ADC-11, and its successor the USB ADC-11, proved to be the perfect choice for users wanting a low–cost way to measure and record multiple signals. The PicoLog 1000 Series builds on this success to give you the same low-cost data acquisition but with greater power and performance. (Because the ADC-11 was so popular we’ve also added a USB ADC-11 compatibility mode which allows you to use your PicoLog 1000 logger as a direct replacement to the USB ADC-11.)

Data logger terminal board

AN EXPANDABLE MULTICHANNEL DATA ACQUISITION SYSTEM

The budget model PicoLog 1012 has 12 input channels and 10 bit resolution. The powerful PicoLog 1216 has 16 channels and 12 bit resolution. Need more channels? No problem. Using PicoLog you can connect up to 4 Pico data loggers to one PC — giving you a potential 64 channel PicoLog 1000 Series data acquisition system, or the ability to use your PicoLog 1000 logger with other devices such as the USB TC-08 Thermocouple Data Logger.

OPTIONAL TERMINAL BOARD

The optional terminal board has screw terminals to allow sensor wires to be attached to the data logger without soldering. The terminal board also has locations where you can fit resistors to offset and extend the input ranges of the logger.

16 channel picoscope

FAST AND ACCURATE

With 10 or 12-bit resolution and multiple sampling modes, a PicoLog 1000 Series logger will meet your data logging needs. The PicoLog 1000 Series has 3 sampling modes: Streaming mode allows channel voltage readings to be logged continuously at up to 100 kS/s, while block mode captures up to the full 1 MS/s  sample rate of the logger for a duration limited by the 8000 sample buffer, both these speeds applying to single-channel operation. The PicoLog application provides an extra mode, real-time continuous sampling, which provides averaged, time-accurate readings with automatic measurements at up to 1 kS/s on any number of channels.

ZAR 3234,0000

PicoNVA106-LeftFront

PicoVNA 106

sku Product SKU:  PIC-VNA-106

PicoVNA 6 GHz Vector Network Analyzer

High performance, portability and low cost

  • 300 kHz to 6 GHz operation
  • High speed of > 5000 dual-port s-parameters per second
  • ‘Quad RX’ four-receiver architecture for optimal accuracy
  • 118 dB dynamic range at 10 Hz bandwidth
  • 0.005 dB RMS trace noise at bandwidth of 140 kHz
  • Compact half-rack, lightweight package 
  • PC-controlled over USB from a Microsoft Windows interface
  • Reference plane offsetting and de-embedding
  • Time domain and port impedance transformations
  • Tabular and graphic print and save formats, including Touchstone
  • P1dB, AM to PM, and stand-alone signal generator utilities
  • Fully accessible, guided 8 and 12-term calibration processes
  • 6 calibration modes, including unknown through and connected DUT isolation
  • Calibration and check standards with data for confident measurements

Making vector network analysis accessible

Today's microwave measuring instruments need to be straightforward, accurate, portable and affordable. No longer restricted to specialists, they are now used by scientists, educators, surveyors, inspectors, engineers and technicians in radio and gigabit data applications. Now Pico Technology has applied its expertise in microwave sampling oscilloscopes and time domain transmission and reflectometry to bring you a USB vector network analyzer.

The PicoVNA 106 is a professional USB-controlled, laboratory grade vector network instrument of unprecedented performance, portability and affordability. Despite its small size and low cost, the instrument boasts a ‘Quad RX’ four-receiver architecture to eliminate the uncorrectable errors, delays and fragility of three-receiver designs with internal transfer switches. 

The PicoVNA 106 offers exceptional dynamic range of 118 dB and only 0.005 dB RMS trace noise at its maximum operating bandwidth of 140 kHz. It can also gather all four s-parameters at every frequency point in just 190 µs; in other words a 500 point 2-port .s2p Touchstone file in less than one tenth of a second. The cost is so low that the PicoVNA 106 could even be used as a cost-effective high-dynamic-range scalar network analyzer! It's affordable in the classroom, small business and even amateur workshop, yet capable in the microwave expert's laboratory.

Vector network analysis everywhere

With all these advantages, the PicoVNA 106 is ideal for field service, installation test and classroom applications. Its remote automation interface extends its use to applications such as:

  • Test automation or the OEM needing to integrate a reflectometry or transmission measurement core, in:
    • Electronics component, assembly and system, and interface/interconnect ATE (cable, PCB and wireless)
    • Material, geological, life-science and food science tissue imaging or penetrating scan and radar applications
  • Inspection, test, characterization or calibration in the manufacture, distribution and service center industries
  • Broadband cable and harness test at manufacture, installation and fault over life
  • Antenna matching and tuning

ZAR 93075,0000

IMG-PicoScope9404_SDK

PicoScope 9404 Series

sku Product SKU:  PIC-9404s

5 & 16 GHz Sampler Extended Real-Time Oscilloscopes

The PicoScope 9400 Series is a new class of SXRTO oscilloscopes that combine the benefits of real-time sampling, equivalent-time sampling, and high analog bandwidth.

  • SXRTO (sampler-extended real-time oscilloscope)
  • 9404-16: 16 GHz bandwidth, 22 ps transition time and 2.5 TS/s (0.4 ps resolution) equivalent-time sampling
  • 9404-05: 5 GHz bandwidth, 70 ps transition time and 1 TS/s (1 ps resolution) equivalent-time sampling
  • Pulse, eye and mask testing down to 100 ps and up to 8 Gb/s
  • Four 12-bit 500 MS/s ADCs
  • Intuitive and configurable touch-compatible Windows user interface
  • Comprehensive built-in measurements, zooms, data masks, and histograms
  • ±800 mV full-scale input range into 50 Ω
  • 10 mV/div to 0.25 V/div ranges provided by digital gain
  • Up to 250 kS trace length, shared between channels
  • Optional clock and data recovery (8 Gb/s on 9404-16, 5 Gb/s on 9404-05)

The PicoScope 9400 Series SXRTOs has four input channels up to 16 GHz with market-leading ADC, timing, and display resolutions for accurately measuring and visualizing high-speed analog and data signals. They are ideal for capturing pulse and step transitions down to 22 ps, impulses down to 45 ps, and clocks and data eyes to 8 Gb/s. Most high-bandwidth applications involve repetitive signals or clock-related data streams that can be readily analyzed by equivalent-time sampling (ETS). The SXRTO quickly builds ETS, persistence displays, and statistics. It has a built-in full-bandwidth trigger on every channel, with pretrigger ETS capture too well above the Nyquist sampling rate. There are three acquisition modes—real-time, ETS, and roll—all capturing at 12-bit resolution into a shared memory of 250 kS.

The PicoSample 4 software is derived from our existing PicoSample 3 and PicoScope 9000 products, which together represent over ten years of development, customer feedback, and optimization.

The high-resolution display can be resized to fit any window, filling 4k and even larger monitors or arrays of monitors. Four independent zoom channels can show you different views of your data down to a resolution of 0.4 ps. Most of the controls and status panels can be shown or hidden according to your application, allowing you to make optimal use of the display area.

The oscilloscope has a 2.5 GHz direct trigger that can be driven from any input channel, and a built-in prescaler can extend the trigger bandwidth to 5 GHz. The external prescaler on 9404-16 extends this further to 16 GHz.

These compact units are small enough to place on your workbench close to the device under test. Now, instead of using remote probe heads attached to a large benchtop unit, all you need is a short, low-loss coaxial cable. Everything else you need is built into the oscilloscope, with no expensive hardware or software add-ons to worry about, and we don’t charge you for new software features and updates.

Typical applications

  • Telecom and radar test, service and manufacturing
  • Optical fiber, transceiver, and laser testing (optical to electrical conversion not included)
  • RF, microwave, and gigabit digital system measurements
  • Signal, eye, pulse, and impulse characterization
  • Precision timing and phase analysis
  • Digital system design and characterization
  • Eye diagram, mask, and limits test up to 8 Gb/s
  • Clock and data recovery at up to 8 Gb/s
  • Ethernet, HDMI 1, PCI, SATA, USB 2.0
  • Semiconductor characterization
  • Signal, data, and pulse/impulse integrity and pre-compliance testing

High-bandwidth probes

The PicoConnect 900 Series low-impedance, high-bandwidth probes are ideal companions for the PicoScope 9400 Series, allowing cost-effective fingertip browsing of fast signals. Two series are available:

  • RF, microwave, and pulse probes for broadband signals up to 5 GHz (10 Gb/s)
  • Gigabit probes for data streams such as USB 2, HDMI 1, Ethernet, PCIe, and SATA

Other features

Bandwidth limit filters

A selectable analog bandwidth limiter (100 or 450 MHz) on each input channel can be used to reject high frequencies and associated noise. The narrow setting can be used as an anti-alias filter.

Frequency counter

A dedicated frequency counter shows signal frequency (or period) at all times, regardless of measurement and timebase settings, with a resolution of 1 ppm.

Optional clock and data recovery

Clock and data recovery (CDR) is now available as a factory-fitted optional trigger feature for the PicoScope 9404-16 and 9404-05 SXRTOs.

Associated with high-speed serial data applications, clock, and data recovery will already be familiar to PicoScope 9300 users. While low-speed serial data can often be accompanied by a separate clock signal, at high speed this approach would create timing skew and jitter between the clock and the data that could prevent accurate data decoding. Thus high-speed data receivers will generate a new clock, and using a phase-locked loop technique they will lock and align that new clock to the incoming data stream. This is the recovered clock, which can then be used to decode and thus recover data accurately. They have also saved the cost of an entire clock signal path by now needing only the serial data signal.

In many applications requiring our oscilloscopes to view the data, the data generator and its clock will be close at hand and we can trigger off that clock. However, if only the data is available (at the far end of an optical fiber, for instance), we will need the CDR option to recover the clock and then trigger off that instead. We may also need to use the CDR option in demanding eye and jitter measurements. This is because we want our instrument to measure as exactly as possible the signal quality that a recovered clock and data receiver will "see".

When fitted, the PicoScope 9400 CDR option can be selected as the trigger source from any input channel. Additionally, for use by other instruments or by downstream system elements, two SMA(f) outputs present recovered clock and recovered data from the rear panel.

Contact Comtest to order this option.

ZAR 283307,0000