{{minicart.wishlist.length}} {{minicart.cartList.length}}
You have no items in your shopping cart.
You have 1 item in your shopping cart.
{{multiCartItemsStr.replace('[COUNT]', minicart.cartList.length)}}
{{cartItem.ProductName}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
Qty: {{cartItem.Quantity | number : 2}}

Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Image Item Qty
{{cartItem.ProductName}} {{cartItem.ProductName}}
SKU: {{cartItem.ProductSku}}
{{cartItem.Quantity | number : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your shopping cart.
Description Created
{{savedCart.Description}} {{savedCart.CreateDate | date : 'yyyy-MM-dd h:mm a'}}
SKU Product Name Unit Cost Qty Line Total
{{cartItem.ProductSku}} {{cartItem.ProductName}} {{cartItem.UnitCost | currency : 'R' : 2}} {{cartItem.Quantity | number : 2}} {{cartItem.UnitCost * cartItem.Quantity | currency : 'R' : 2}}
  • {{itemVariant.VariantHasText ? (itemVariant.VariantName + ': ' + itemVariant.VariantText) : (itemVariant.VariantGroup + ': ' + itemVariant.VariantName)}}
You have no items in your saved shopping cart.
You have no items in your wishlist.
Status Order No. Order Date Ship To Order Total Pay Total Balance
Bill Me Later Open Ready To Ship Shipped Picked Up Cancelled Incomplete On Hold Back Ordered Returned {{order.Status}}
{{order.OrderID}} {{order.OrderDate | date : 'yyyy-MM-dd'}} {{order.ShipFirstName}} {{order.ShipLastName}}, {{order.ShipAddress1}} {{order.ShipAddress2}}, {{order.ShipCity}}, {{order.ShipState}} {{order.ShipZipcode}} {{order.GrandTotal | currency : 'R' : 2}} {{order.PayTotal | currency : 'R' : 2}} {{order.GrandTotal - order.PayTotal | currency : 'R' : 2}}

Purchase store

Logo

Comtest Store RFQ

Grid View List View Sorting: Normal Sorting: Price Low to High Sorting: Price High to Low Sorting: New Arrivals Sorting: Brand A-Z Sorting: Brand Z-A
Fluke_Image_PTi120_2

Fluke PTi120

sku Product SKU:  FLK-PTi120

Product overview: Compact Fluke PTi120 Pocket Thermal Camera

Portable thermal camera for industrial inspection

In the right place. At the right time. With the right tool.

The bigger the problem, the faster you need to solve it. The Fluke Pocket Thermal Camera puts the power to minimize downtime in everyone’s hands. The first line of defense for easy troubleshooting. Stop fighting fires on the job, start preventing them.

On the job, because it does the job.

A camera small enough to carry every day without worry. Always at hand. Stands up to dirt and water. Can survive a 1-meter drop. Now enhanced infrared inspections are right in your pocket for quick temperature scans of electrical equipment, machinery and other assets.

Automatically save your thermal images to the right folders.

With Fluke Connect Asset Tagging you eliminate the tedium of sorting and organizing your infrared images. By simply scanning your asset’s QR code or barcode, your infrared image and all of your date and time stamped information will be stored to your predefined folders. Send via WiFi or automatically upload once you connect to the network or computer via USB. It's about time. Now you can more efficiently save, find and report on issues before they become problems.

Get your preferred level of infrared every time.

The 3.5” LCD touchscreen offers IR-Fusion™ to blend a visible light image with an infrared image to more easily locate problems. Simply slide your finger across the screen to adjust the setting.

ZAR -1

FLK-28II-Ex

Fluke 28 II Ex Intrinsically Safe True RMS Digital Multimeter

sku Product SKU:  FLK-28II-Ex

Now there’s one intrinsically safe digital multimeter (DMM) you can use in IIC (gas), in Zone 1 and 2 and IIIC (dust), Zone 21 and 22. Whether you work in petroleum, chemical, or pharmaceutical environments, all the test and troubleshooting power you need is packed into the most rugged intrinsically safe (IS) DMM Fluke has ever built. The Fluke 28 II Ex is also waterproof, dust-proof and drop-proof. You’ll be equipped to handle any situation, inside and outside of hazardous zones, without compromising compliance or measurement performance.

All the measurement functions of our most popular industrial DMMs

One tool equips you with all the testing and troubleshooting power you need wherever you go––inside or outside ATEX zones 1,2,21, or 22. No need to carry different meters for different areas, or worry about crossing through an Ex-required zone with a non-Ex rated instrument.

  • 4-1/2 digit mode for precise measurements (20,000 counts)
  • True-rms ac voltage and current for accurate measurement on nonlinear signals
  • Measures up to 1000 V and 10A AC and DC (note that Ex zones require reduced measurements)
  • Low pass filter ensures accurate voltage and frequency measurements on variable speed motor drives (VSDs)
  • Frequency to 200 kHz and % duty cycle to help you diagnose VSDs and switching power supplies
  • Resistance, continuity and diode test
  • 10,000 μF capacitance range for components and motor caps
  • Conductance measurements for high resistance or leakage tests
  • Min/Max-Average and Peak capture to record transients and variations automatically
  • Relative mode to remove test lead interference on resistance measurements
  • Auto and manual ranging for maximum flexibility
  • Input Alert protects you by chirping and flashing “Lead when leads are plugged into the wrong inputs

Easy to use

Important extras keep you productive all day long in less than optimal conditions.

  • Backlit keypad buttons provide extra visibility in poorly lit areas, even when you’re wearing full PPE
  • Large display digits and 2-level bright white backlight also increases visibility
  • Long battery life – 400 hours typical without backlight (Alkaline)
  • Optional magnetic hanger for easy setup and viewing while freeing your hands for other tasks

Easy to service in the field

Access to the separate battery compartment makes it easy to change batteries or fuses without jeopardizing instrument calibration.

ZAR -1

FLK-TiX580

Fluke TiX580 Infrared Camera

sku Product SKU:  FLK-TiX580

Does everyone in the plant turn to you? Are you the one who quickly can collect facts, understand issues and mold process and procedures to meet expensive decisions head-on? If so, you need an infrared camera that is as flexible and detail oriented as you are. That is why the TiX580 should always be within arm’s reach. Your day can take you anywhere:

  • R&D lab
  • Production floor
  • Off site, remote locations
  • Transmission and distribution lines (substations)

From quality assurance to preventive maintenance and outdoor inspections, everyday can bring a different environment and a different challenge for your thermal imager. With an unsurpassed level of detail in every infrared image and the ability to capture quality images of objects whether they are tiny and close to large and far overhead. The ergonomic design and neck strap make long inspection days easier. Outside the rotating screen lets you adjust to minimize glare and the touchscreen delivers a premium in-field viewing experience. The TiX580 has the tools accommodate your environment.

  • Real-time temperature graphs
  • Radiometric video recording
  • Auto capture image sequence
  • MatLab and LabView integration capabilities

Get the most out of your TiX580 with Fluke Connect™ desktop software. Create professional reports in minutes while effic

  • Edit and optimize images
  • Combine infrared and visible images for simpler analysis
  • Create detailed reports
  • Organize and search images by asset, severity, and title

ZAR -1

Tek-MSO4x-Front

4 Series MSO Mixed Signal Oscilloscope

sku Product SKU:  TEK-MSO4x

Strength in numbers

Input channels

  • 4 or 6 FlexChannel® inputs 
  • Each FlexChannel provides: 
    • One analog signal that can be displayed as a waveform view, a spectrum view 1, or both simultaneously 
    • Eight digital logic inputs with TLP058 logic probe 

Bandwidth (all analog channels)

  • 200 MHz, 350 MHz, 500 MHz, 1 GHz, 1.5 GHz (upgradable) 

Sample rate (all analog / digital channels)

  • Real-time: 6.25 GS/s 

Record length (all analog / digital channels)

  • 31.25 Mpoints standard (62.5 Mpoints optional upgrade) 

Waveform capture rate

  • >500,000 waveforms/s 

Vertical resolution

  • 12-bit ADC 
  • Up to 16-bits in High Res mode 

Standard trigger types

  • Edge, Pulse Width, Runt, Timeout, Window, Logic, Setup & Hold, Rise/Fall Time, Parallel Bus, Sequence, Visual Trigger 
  • Auxiliary Trigger ≤300 VRMS (Edge Trigger only) 

Standard analysis

  • Cursors: Waveform, V Bars, H Bars, V&H Bars 
  • Measurements: 36  
  • FastFrameTM: Segmented memory acquisition mode with maximum trigger rate waveforms per second 
  • Plots: Time Trend, Histogram and Spectrum 
  • Math: Basic waveform arithmetic, FFT, and advanced equation editor 
  • Search: Search on any trigger criteria 

Optional analysis

  • Spectrum View: Frequency-domain analysis with independent controls for frequency and time domains 
  • Power Measurements and Analysis 

Optional serial bus trigger, decode and analysis

  • I2C, SPI, I3C, RS-232/422/485/UART, SPMI, CAN, CAN FD, LIN, FlexRay, SENT, USB 2.0, Ethernet, I2S, LJ, RJ, TDM, MIL-STD-1553, ARINC 429  

Arbitrary/Function Generator1

  • 50 MHz waveform generation 
  • Waveform Types: Arbitrary, Sine, Square, Pulse, Ramp, Triangle, DC Level, Gaussian, Lorentz, Exponential Rise/Fall, Sin(x)/x, Random Noise, Haversine, Cardiac 

Digital voltmeter2

  • 4-digit AC RMS, DC, and DC+AC RMS voltage measurements 

Trigger frequency counter2

  • 8-digit 

Display

  • 13.3-inch (338 mm) TFT color 
  • High Definition (1,920 x 1,080) resolution 
  • Capacitive (multi-touch) touchscreen 

Connectivity

  • USB 2.0 Host, USB 2.0 Device (5 ports); LAN (10/100/1000 Base-T Ethernet); HDMI 3

e*Scope®

  • Remotely view and control the oscilloscope over a network connection through a standard web browser 

Warranty

  • 3 years standard

Dimensions

  • 9.8 in (249 mm) H x 17.7 in (450 mm) W x 6.1 in (155 mm) D 
  • Weight: <16.8 lbs. (7.6 kg) 

1Optional and ungradable.

2Free with product registration.

3Requires connection to high definition display (1,920 x 1,080 resolution).

Never let a lack of channels slow down your verification and debug process again!

The 4 Series MSO offers better visibility into complex systems by offering four and six channel models with a 13.3-inch high-definition (1,920 x 1,080) display. Many applications, such as embedded systems, three-phase power electronics, automotive electronics, power supply design, and DC-to-DC power converters, require the observation of more than four analog signals to verify and characterize device performance, and to debug challenging system issues.

Most engineers can recall situations in which they were debugging a particularly difficult problem and wanted greater system visibility and context, but the scope they were using was limited to two or four analog channels. Using a second scope involves significant effort to align trigger points, difficulty in determining timing relationships across the two displays, and documentation challenges.

And while you might assume that a six channel scope would cost 50% more than a four-channel scope, you'll be pleasantly surprised to find that six channel models are only ~20% more than four channel models. The additional analog channels can pay for themselves quickly by enabling you to keep current and future projects on schedule.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Voltage measurements on a switch-mode power supply showing the ripple voltage on one of the power rails.

 

FlexChannel®technology enables maximum flexibility and broader system visibility

The 4 Series MSO redefines what a Mixed Signal Oscilloscope (MSO) should be. FlexChannel technology enables each channel input to be used as a single analog channel, eight digital logic inputs (with the TLP058 logic probe), or simultaneous analog and spectrum views1with independent acquisition controls for each domain. Imagine the flexibility and configurability this provides.

With a six FlexChannel model, you can configure the instrument to look at six analog and zero digital signals. Or five analog and eight digital. Or four analog and 16 digital, three analog and 24 digital and so on. You can change the configuration at any time by simply adding or removing TLP058 logic probes, so you always have the right number of digital channels.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

FlexChannel technology enables the ultimate in flexibility. Each input can be configured as a single analog or eight digital channels based on the type of probe you attach.

 

 

Previous-generation MSOs required tradeoffs, with digital channels having lower sample rates or shorter record lengths than analog channels. The 4 Series MSO offers a new level of integration of digital channels. Digital channels share the same high sample rate (up to 6.25 GS/s), and long record length (up to 62.5) Points for analog channels.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

The TLP058 provides eight high performance digital inputs. Connect as many TLP058 probes as you like, enabling up to a maximum of 48 digital channels.

 

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Channel 2 has a TLP058 Logic Probe connected to the eight inputs of a DAC. Notice the green and blue color coding, where ones are green and zeros are blue. Another TLP058 Logic Probe on Channel 3 is probing the SPI bus driving the DAC. The white edges indicate higher frequency information is available by either zooming in or moving to a faster sweep speed on the next acquisition.

 

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Beyond just analog and digital, FlexChannel inputs include Spectrum View. This Tektronix-patented technology enables you to simultaneously view both analog and spectral views of all your analog signals, with independent controls in each domain.

 

1Optional.

Unprecedented signal viewing capability

The stunning 13.3-inch (338 mm) display in the 4 Series MSO is the largest display in its class. It is also the highest resolution display, with full HD resolution (1,920 x 1,080), enabling you to see many signals at once with ample room for critical readouts and analysis.

The viewing area is optimized to ensure that the maximum vertical space is available for waveforms. The Results Bar on the right can be hidden, enabling the waveform view to use the full width of the display.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Stacked display mode enables easy visibility of all waveforms while maintaining maximum ADC resolution on each input for the most accurate measurements.

 

The 4 Series MSO offers a revolutionary new Stacked display mode. Historically, scopes have overlaid all waveforms in the same graticule, forcing difficult tradeoffs:

  • To make each waveform visible, you vertically scale and position each waveform so that they don't overlap. Each waveform uses a small percentage of the available ADC range, leading to less accurate measurements.

  • For measurement accuracy, you vertically scale and position each waveform to cover the entire display. The waveforms overlap each other, making it hard to distinguish signal details on individual waveforms

The new Stacked display eliminates this tradeoff. It automatically adds and removes additional horizontal waveform 'slices' (additional graticules) as waveforms are created and removed. Each slice represents the full ADC range for the waveform. All waveforms are visually separated from each other while still using the full ADC range, enabling maximum visibility and accuracy. And it's all done automatically as waveforms are added or removed! Channels can easily be reordered in stacked display mode by dragging and dropping the channel and waveform badges in the Settings bar at the bottom of the display. Groups of channels can also be overlaid within a slice to simplify visual comparison of signals.

The large display in the 4 Series MSO also provides plenty of viewing area not only for signals, but also for plots, measurement results tables, bus decode tables and more. You can easily resize and relocate the various views to suit your application.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Viewing three analog channels, eight digital channels, a decoded serial bus waveform, decoded serial packet results table, four measurements, a measurement histogram, measurements results table with statistics and a search on serial bus events - simultaneously! 

 

Exceptionally easy-to-use user interface lets you focus on the task at hand

The Settings Bar - key parameters and waveform management

Waveform and scope operating parameters are displayed in a series of “badges” in the Settings Bar that runs along the bottom of the display. The Settings Bar provides Immediate access for the most common waveform management tasks. With a single tap, you can:

  • Turn on channels 
  • Add math waveforms 
  • Add reference waveforms 
  • Add bus waveforms 
  • Enable the optional integrated Arbitrary/Function generator (AFG) 
  • Enable the optional integrated digital voltmeter (DVM) 

The Results Bar - analysis and measurements

The Results Bar on the right side of the display includes immediate, one-tap access to the most common analytical tools such as cursors, measurements, searches, measurement and bus decode results tables, plots, and notes.

DVM, measurement and search results badges are displayed in the Results Bar without sacrificing any waveform viewing area. For additional waveform viewing area, the Results Bar can be dismissed and brought back at any time.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Configuration menus are accessed by simply double-tapping on the item of interest on the display. In this case, the Trigger badge was double-tapped to open the Trigger configuration menu.

 

Touch interaction finally done right

Scopes have included touch screens for years, but the touch interface has been an afterthought. The 4 Series MSO's display includes a capacitive touchscreen and provides the industry's first oscilloscope user interface truly designed for touch.

The touch interactions that you use with phones and tablets, and expect in a touch enabled device, are supported in the 4 Series MSO.

  • Drag waveforms left/right or up/down to adjust horizontal and vertical position or to pan a zoomed view 
  • Pinch and expand to change scale or zoom in/out in either horizontal or vertical directions 
  • Drag items to the trash can to delete them 
  • Swipe in from the right to reveal the Results Bar or down from the top to access the menus in the upper left corner of the display 

Smooth, responsive front panel controls allow you to make adjustments with familiar knobs and buttons, and you can add a mouse or keyboard as a third interaction method.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Interact with the capacitive touch display in the same way you do on your phones and tablets. 

 

Attention to detail in the front-panel controls

Traditionally, the front face of a scope has been roughly 50% display and 50% controls. The 4 Series MSO display fills about 75% of the face of the instrument. To achieve this, it has a streamlined front panel that retains critical controls for simple intuitive operation, but with a reduced number of menu buttons for functions directly accessed via objects on the display.

Color-coded LED light rings indicate trigger source and vertical scale/position knob assignments. Large, dedicated Run/ Stop and Single Sequence buttons are placed prominently in the upper right, and other functions like Force Trigger, Trigger Slope, Trigger Mode, Default Setup, Autoset and Quick-save functions are all available using dedicated front panel buttons.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Efficient and intuitive front panel provides critical controls while still leaving room for the largehigh definition display.

 

Experience the performance difference

Digital Phosphor technology with FastAcq™ high-speed waveform capture

To debug a design problem, first you must know it exists. Digital phosphor technology with FastAcq provides you with fast insight into the real operation of your device. Its fast waveform capture rate - greater than 500,000 waveforms per second - gives you a high probability of seeing the infrequent problems common in digital systems: runt pulses, glitches, timing issues, and more. To further enhance the visibility of rarely occurring events, intensity grading indicates how often rare transients are occurring relative to normal signal characteristics.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

FastAcq's high waveform capture rate enables you to discover infrequent problems common in digital design.

 

Industry leading vertical resolution

The 4 Series MSO provides the performance to capture the signals of interest while minimizing the effects of unwanted noise when you need to capture high-amplitude signals while seeing smaller signal details. At the heart of the 4 Series MSO are 12-bit analog-to-digital converters (ADCs) that provide 16 times the vertical resolution of traditional 8-bit ADCs.

A new High Res mode applies a hardware-based unique Finite Impulse Response (FIR) filter based on the selected sample rate. The FIR filter maintains the maximum bandwidth possible for that sample rate while preventing aliasing and removing noise from the oscilloscope amplifiers and ADC above the usable bandwidth for the selected sample rate. High Res mode always provides at least 12 bits of vertical resolution and extends all the way to 16 bits of vertical resolution at ≤125 MS/s sample rates.

New lower-noise front end amplifiers further improve the 4 Series MSO's ability to resolve fine signal detail.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

The 4 Series MSO's 12-bit ADC, along with the new High Res mode, enable industry leading vertical resolution.

 

Triggering

Discovering a device fault is only the first step. Next, you must capture the event of interest to identify root cause. The 4 Series MSO provides a complete set of advanced triggers, including:

  • Runt 
  • Logic 
  • Pulse width 
  • Window 
  • Timeout 
  • Rise/Fall time 
  • Setup and Hold violation 
  • Serial packet 
  • Parallel data 
  • Sequence 
  • Visual Trigger 

With up to a 62.5 Mpoint record length, you can capture many events of interest, even thousands of serial packets in a single acquisition, providing high-resolution to zoom in on fine signal details and record reliable measurements.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

The wide variety of trigger types and context-sensitive help in the trigger menu make it easier than ever to isolate the event of interest.

 

Visual Trigger - finding the signal of interest quickly

Finding the right cycle of a complex bus can require hours of collecting and sorting through thousands of acquisitions for an event of interest. Defining a trigger that isolates the desired event speeds up debug and analysis efforts.

Visual Trigger extends the instrument's triggering capabilities by scanning through all waveform acquisitions and comparing them to on-screen areas (geometric shapes). You can create an unlimited number of areas using the mouse or touchscreen, and a variety of shapes (triangles, rectangles, hexagons, or trapezoids) can be used to specify the desired trigger behavior. Once shapes are created, they can be edited interactively to create custom shapes and ideal trigger conditions. Once multiple areas are defined, a Boolean logic equation can be used to set complex trigger conditions using on-screen editing features.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Visual Trigger areas isolate an event of interest, saving time by only capturing the events you want to see.

 

By triggering only on the most important signal events, Visual Trigger can save hours of capturing and manually searching through acquisitions. In seconds or minutes, you can find the critical events and complete your debug and analysis efforts. Visual Trigger even works across multiple channels, extending its usefulness to complex system troubleshooting and debug tasks.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Multiple channel triggering. Visual Trigger areas can be associated with events spanning multiple channels, such as triggering on a specific burst-width on channel 1 and a specified bit pattern on channel 2.

 

Accurate high-speed probing

The TPP Series passive voltage probes offer all the benefits of general-purpose probes -- high dynamic range, flexible connection options, and robust mechanical design -- while providing the performance of active probes. Up to 1 GHz analog bandwidth enables you to see high frequency components in your signals, and extremely low 3.9 pF capacitive loading minimizes adverse effects on your circuits and is more forgiving of longer ground leads.

An optional, low-attenuation (2X) version of the TPP probe is available for measuring low voltages. Unlike other low-attenuation passive probes, the TPP0502 has high bandwidth (500 MHz) as well as low capacitive loading (12.7 pF).

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

4 Series MSOs come standard with four probes for four or six channel models (TPP0250 for 200 MHz models; TPP0500B for 350 MHz, 500 MHz, 1 GHz, and 1.5 GHz models).

 

TekVPI Probe Interface

The TekVPI®probe interface sets the standard for ease of use in probing. In addition to the secure, reliable connection that the interface provides, many TekVPI probes feature status indicators and controls, as well as a probe menu button right on the comp box itself. This button brings up a probe menu on the oscilloscope display with all relevant settings and controls for the probe. The TekVPI interface enables direct attachment of current probes without requiring a separate power supply. TekVPI probes can be controlled remotely through USB or LAN, enabling more versatile solutions in ATE environments. The 4 Series MSO provides up to 80 W of power to the front panel connectors, sufficient to power all connected TekVPI probes without the need for an additional probe power supply.

IsoVu™ Isolated Measurement System

Whether designing an inverter, optimizing a power supply, testing communication links, measuring across a current shunt resistor, debugging EMI or ESD issues, or trying to eliminate ground loops in your test setup, common mode interference has caused engineers to design, debug, evaluate, and optimize "blind" until now.

Tektronix' revolutionary IsoVu technology uses optical communications and power-over-fiber for complete galvanic isolation. When combined with the 4 Series MSO equipped with the TekVPI interface, it is the first, and only, measurement system capable of accurately resolving high bandwidth, differential signals, in the presence of large common mode voltage with:

  • Complete galvanic isolation

  • Up to 1 GHz bandwidth

  • 1 Million to 1 (120 dB) common mode rejection at 100 MHz

  • 10,000 to 1 (80 dB) of common mode rejection at full bandwidth

  • Up to 2,500 V differential dynamic range

  • 60 kV common mode voltage range

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

The Tektronix TIVM Series IsoVu™ Measurement System offers a galvanically isolated measurement solution to accurately resolve high bandwidth, differential signals up to 2,500 Vpk in the presence of large common mode voltages, with the best in class common mode rejection performance across its bandwidth.

 

Comprehensive analysis for fast insight

Basic waveform analysis

Verifying that your prototype's performance matches simulations and meets the project's design goals requires careful analysis, ranging from simple checks of rise times and pulse widths to sophisticated power loss analysis, characterization of system clocks, and investigation of noise sources.

The 4 Series MSO offers a comprehensive set of standard analysis tools including:

  • Waveform- and screen-based cursors 
  • 36 automated measurements. Measurement results include all instances in the record, the ability to navigate from one occurrence to the next, and immediate viewing of the minimum or maximum result found in the record 
  • Basic waveform math 
  • Basic FFT analysis 
  • Advanced waveform math including arbitrary equation editing with filters and variables 
  • FastFrame™ Segmented Memory enables you to make efficient use of the oscilloscope’s acquisition memory by capturing many trigger events in a single record while eliminating the large time gaps between events of interest. View and measure the segments individually or as an overlay. 

Measurement results tables provide comprehensive statistical views of measurement results with statistics across both the current acquisition and all acquisitions.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Using multiple channels to visualize multiple clock and data lines.

 

Navigation and search

Finding your event of interest in a long waveform record can be time consuming without the right search tools. With today's record lengths of many millions of data points, locating your event can mean scrolling through literally thousands of screens of signal activity.

The 4 Series MSO offers the industry's most comprehensive search and waveform navigation with its innovative Wave Inspector®controls. These controls speed panning and zooming through your record. With a unique force-feedback system, you can move from one end of your record to the other in just seconds. Or, use intuitive drag and pinch/expand gestures on the display itself to investigate areas of interest in a long record.

The Search feature allows you to automatically search through your long acquisition looking for user-defined events. All occurrences of the event are highlighted with search marks and are easily navigated to, using the Previous ( ← ) and Next ( → ) buttons found on the front panel or on the Search badge on the display. Search types include edge, pulse width, timeout, runt, window, logic, setup and hold, rise/fall time and parallel/serial bus packet content. You can define as many unique searches as you like.

You can also quickly jump to the minimum and maximum value of search results by using the Min and Max buttons on the Search badge.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Earlier, FastAcq revealed the presence of a runt pulse in a digital data stream prompting further investigation. In this acquisition, Search 1 reveals that there are six runt pulses in the acquisition.

 

Serial protocol triggering and analysis (optional)

During debugging, it can be invaluable to trace the flow of activity through a system by observing the traffic on one or more serial buses. It could take many minutes to manually decode a single serial packet, much less the thousands of packets that may be present in a long acquisition.

And if you know the event of interest that you are attempting to capture occurs when a particular command is sent across a serial bus, wouldn't it be nice if you could trigger on that event? Unfortunately, it's not as easy as simply specifying an edge or a pulse width trigger.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Triggering on a CAN serial bus. A bus waveform provides time-correlated decoded packet content including Start, Arbitration, Control, Data, CRC and ACK while the bus decode table presents all packet content from the entire acquisition.

 

The 4 Series MSO offers a robust set of tools for working with the most common serial buses found in embedded design including I2C, SPI, I3C, RS-232/422/485/UART, SPMI, CAN, CAN FD, LIN, FlexRay, SENT, USB LS/FS/HS, Ethernet 10/100, Audio (I2S/LJ/RJ/TDM), MIL-STD-1553, and ARINC 429.

Serial protocol search enables you to search through a long acquisition of serial packets and find the ones that contain the specific packet content you specify. Each occurrence is highlighted by a search mark. Rapid navigation between marks is as simple as pressing the Previous ( ← ) and Next ( → ) buttons on the front panel or in the Search badge that appears in the Results Bar.

The tools described for serial buses also work on parallel buses. Support for parallel buses is standard in the 4 Series MSO. Parallel buses can be up to 48 bits wide and can include a combination of analog and digital channels.

  • Serial protocol triggering lets you trigger on specific packet content including start of packet, specific addresses, specific data content, unique identifiers, and errors.

  • Bus waveforms provide a higher-level, combined view of the individual signals (clock, data, chip enable, and so on) that make up your bus, making it easy to identify where packets begin and end, and identifying sub-packet components such as address, data, identifier, CRC, and so on.

  • The bus waveform is time aligned with all other displayed signals, making it easy to measure timing relationships across various parts of the system under test.

  • Bus decode tables provide a tabular view of all decoded packets in an acquisition much like you would see in a software listing. Packets are time stamped and listed consecutively with columns for each component (Address, Data, and so on).

Spectrum View (optional)

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Intuitive spectrum analyzer controls like center frequency, span and resolution bandwidth (RBW), independent from time domain controls, provide easy setup for frequency domain analysis. A spectrum view is available for each FlexChannel analog input, enabling multi-channel mixed domain analysis.

 

It is often easier to debug an issue by viewing one or more signals in the frequency domain. Oscilloscopes have included math-based FFTs for decades in an attempt to address this need. However, FFTs are notoriously difficult to use for two primary reasons.

First, when performing frequency-domain analysis, you think about controls like Center Frequency, Span, and Resolution Bandwidth (RBW), as you would typically find on a spectrum analyzer. But then you use an FFT, where you are stuck with traditional scope controls like sample rate, record length and time/div and have to perform all the mental translations to try to get the view you’re looking for in the frequency-domain.

Second, FFTs are driven by the same acquisition system that’s delivering the analog time-domain view. When you optimize acquisition settings for the analog view, your frequency-domain view isn’t what you want. When you get the frequency-domain view you want, your analog view is not what you want. With math-based FFTs, it is virtually impossible to get optimized views in both domains.

Spectrum View changes all of this. Tektronix’ patented technology provides both a decimator for the time-domain and a digital downconverter for the frequency-domain behind each FlexChannel. The two different acquisition paths let you simultaneously observe both time- and frequency-domain views of the input signal with independent acquisition settings for each domain. Other manufacturers offer various ‘spectral analysis’ packages that claim ease-of-use, but they all exhibit the limitations described above. Only Spectrum View provides both exceptional ease-of-use and the ability to achieve optimal views in both domains simultaneously.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Spectrum Time gates the range of time where the FFT is being calculated. Represented by a small graphical rectangle in the time domain view, it can be positioned to provide time correlation with the time domain waveform. Perfect for conducting Mixed Domain Analysis. Up to 11 automated peak markers provide frequency and magnitude values of each peak. The Reference marker is always the highest peak shown and is indicated in red.

 

Power analysis (optional)

The 4 Series MSO has also integrated the optional 4-PWR-BAS/SUP4-PWR-BAS power analysis package into the oscilloscope's automatic measurement system to enable quick and repeatable analysis of power quality, input capacitance, in-rush current, harmonics, switching loss, safe operating area (SOA), modulation, ripple, efficiency, amplitude and timing measurements, and slew rate (dv/dt and di/dt).

Measurement automation optimizes the measurement quality and repeatability at the touch of a button, without the need for an external PC or complex software setup.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

The Power Analysis measurements display a variety of waveforms and plots.

 

Designed with your needs in mind

Connectivity

The 4 Series MSO contains a number of ports which you can use to connect the instrument to a network, directly to a PC, or to other test equipment.

  • Three USB 2.0  ports on the front and two more USB 2.0  host ports on the rear panel enable easy transfer of screen shots, instrument settings, and waveform data to a USB mass storage device. A USB mouse and keyboard can also be attached to USB host ports for instrument control and data entry.

  • The rear panel USB Device port is useful for controlling the oscilloscope remotely from a PC.

  • The standard 10/100/1000BASE-T Ethernet port on the rear of the instrument enables easy connection to networks and provides LXI Core 2011 compatibility.

  • The HDMI port on the rear of the instrument lets you duplicate the instrument display on an external monitor or projector with 1,920 x 1,080 resolution.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

 

 

 

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

The I/O you need to connect the 4 Series MSO to the rest of your design environment.

 

Remote operation to improve collaboration

Want to collaborate with a design team on the other side of the world?

The embedded e*Scope®capability enables fast control of the oscilloscope over a network connection through a standard web browser. Simply enter the IP address or network name of the oscilloscope and a web page will be served to the browser. Control the oscilloscope remotely in the exact same way that you do in-person.

The industry-standard TekVISA™ protocol interface is included for using and enhancing Windows applications for data analysis and documentation. IVI-COM instrument drivers are included to enable easy communication with the oscilloscope using LAN or USBTMC connections from an external PC.

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

e*Scope provides simple remote viewing and control using common web browsers.

 

Arbitrary/Function Generator (AFG)

The 4 Series MSO contains an optional integrated arbitrary/function generator, perfect for simulating sensor signals within a design or adding noise to signals to perform margin testing. The integrated function generator provides output of predefined waveforms up to 50 MHz for sine, square, pulse, ramp/triangle, DC, noise, sin(x)/x (Sinc), Gaussian, Lorentz, exponential rise/fall, Haversine and cardiac. The arbitrary waveform generator provides 128 k points of record for loading saved waveforms from an internal file location or a USB mass storage device. The 4 Series MSO is compatible with Tektronix' ArbExpress PC-based waveform creation and editing software, making creation of complex waveforms fast and easy.

Digital Voltmeter (DVM) and Trigger Frequency Counter

The 4 Series MSO contains an integrated 4-digit digital voltmeter (DVM) and 8-digit trigger frequency counter. Any of the analog inputs can be a source for the voltmeter, using the same probes that are already attached for general oscilloscope usage. The counter provides a very precise readout of the frequency of the trigger event on which you’re triggering. Both the DVM and trigger frequency counter are available for free and are activated when you register your product.

Enhanced security option

The optional 4-SEC enhanced security option enables password-protected enabling/disabling of all instrument I/O ports and firmware upgrades. In addition, option 4-SEC provides the highest level of security by ensuring that internal memory is clear of all setup and waveform data in compliance with National Industrial Security Program Operating Manual (NISPOM) DoD 5220.22-M, Chapter 8 requirements as well as Defense Security Service Manual for the Certification and Accreditation of Classified Systems under the NISPOM. This ensures you can confidently move the instrument out of a secure area.

Help when you need it

The 4 Series MSO includes several helpful resources so you can get your questions answered rapidly without having to find a manual or go to a website:

  • Graphical images and explanatory text are used in numerous menus to provide quick feature overviews. 
  • All menus include a question mark icon in the upper right that takes you directly to the portion of the integrated help system that applies to that menu. 
  • A short user interface tutorial is included in the Help menu for new users to come up to speed on the instrument in a matter of a few minutes. 

 

4-Series-MSO-MSO44-MSO46-Datasheet

 

 

Integrated help answers your questions rapidly without having to find a manual or go to the internet.

 

ZAR -1

IMG-FLK438II

Fluke 438II

sku Product SKU:  FLK-438II

Quickly and easily discover electrical and mechanical performance of electric motors, and evaluate power quality with a single test tool

The Fluke 438-II Power Quality and Motor Analyzer adds key mechanical measurement capabilities for electric motors to the advanced power quality analysis functions of the Fluke 435 Series II Power Quality Analyzers. Quickly and easily measure and analyze key electrical and mechanical performance parameters such as power, harmonics, unbalance, motor speed, torque and mechanical power without the need of mechanical sensors. Fluke 434-II, 435-II and 437-II Power Quality Analyzer users can add motor analysis capabilities to their existing units with the Fluke-438-II/MA Motor Analyzer upgrade kit. The 438-II uses data from the motor rating plate for either NEMA or IEC rated motors to aid the calculation of the mechanical parameters.

Other useful features:

  • Calculates mechanical power and efficiency without mechanical sensors. Just connect to the input conductors
  • Measures electrical power parameters such as voltage, current, power, apparent power, power factor, harmonic distortion and unbalance to identify characteristics that impact motor efficiency
  • Identify power quality issues such as dips, swells, transients, harmonics and unbalance
  • Uses PowerWave data capture to capture fast RMS data, and show half-cycle averages and waveforms to characterize electrical system dynamics (generator start-ups, UPS switching etc.)
  • Offers waveform capture function to capture 100/120 cycles (50/60 Hz) of each detected event, in all modes, without set-up
  • Uses automatic transient mode to capture waveform data at 200 kS/s on all phases simultaneously up to 6 kV
  • Automatically calculate motor derating according to NEMA/IEC guidelines
  • Fluke Connect® compatible so you can view data locally on the instrument, via Fluke Connect mobile app and PowerLog 430-II desktop software

ZAR -1

IET-PRS-370

PRS-370 Self-Adjusting Programmable Resistance Box & RTD Simulator

sku Product SKU:  IET-PRS-370

The PRS-370 is a Self-Adjusting Programmable Resistance Substituter, just connect an 8.5 digit DMM; Fluke 8508A, 8588A or the Keysight 3458A to the PRS-370 via the IEEE-488 interface, and the PRS-370 becomes a short-term stable variable standard of resistance.

The PRS-370 instructs the DMM to make a measurement of the source resistance and then automatically fine adjusts the output resistance to achieve the "best" accuracy to the nominal resistance value, typically better than 10 ppm.

The PRS-370 utilizes both the front and rear binding posts so that the DUT and DMM can be connected at the same time. Once the resistance measurement is complete using the DMM and rear binding posts, the source resistance is switched to the front binding posts.

The large graphical color display shows the target resistance, ∆ from nominal, measured resistance from the DMM and measurement uncertainty of the DMM.



Save time in adjustment
At the touch of a button the built-in firmware routine allows for automatic calibration of the internal resistors by just connecting a DMM to the PRS-370 . No entering values or manual trimming saves significant time over traditional programmable resistance decades or manual decades.

The right mix of features
The PRS-370 was designed with the right mix of features for to be efficient for both manual and automated application in both laboratory and production environments. With its wide range the PRS-370 was designed to replace multiple decade boxes, individual resistance standards and reduce test time.

User interface
The PRS-370 utilizes a large state-of-the-art color capacitive touchscreen which provides super fast response time. Even in low or bright light conditions the display provides exceptional clarity with large fonts and easy-to-read menus.

The user interface makes the PRS-370 well suited for high accuracy requirements for both manual and automated applications such as; calibration of resistance meters, calibration of temperature controllers and indicators, automated test systems requiring a precision resistive load

The user interface also features softkeys and a numeric keypad allowing use of the user interface without using the touch-screen.

No zero resistance
The PRS Series programmable resistance box employs very low resistance, low thermal emf relays with gold-clad silver-alloy contacts. A special design keeps contact resistance to a minimum. The gold plating keeps the silver contacts from becoming tarnished when unused, or when only low currents are passed through them. This is most often the case when only minute test currents are drawn by digital multimeters and other test instruments. Contact resistance remains low and repeatable through the use of multiple contacts.

Highest quality components
The programmable resistance box employs, high-quality gold-plated tellurium-copper five-way binding posts serve to minimize the thermal emf effects, which would produce errors in dc resistance measurements. Resistors are custom Z-foil and low inductance wirewound for low TC and excellent stability.

5 year warranty
With its industry leading 5 year warranty all aspects of the PRS-370 focus on reliability, reduced ownership costs and simplicity out of the box.

RTD calibration
The PRS-370 is also a programmable decade resistor and RTD simulator that can be used stand-alone to automate your source resistance and temperature controller testing.
Built-in tables for PT100 and PT1000 RTDs and direct resistance substitution makes the PRS-370 ideal for for RTD (Resistance Temperature Detector) simulation. User defined tables can also be created for use with other RTDs. The operator can enter temperature directly and the correct resistance will automatically be programmed.

Resistor carousel
Built-in EIA "preferred value" resistance tables of 1% (E96), 5% (E24), 10% (E12) increments or user specified increment allows the PRS-370 to be used as a resistor carousel.

AC performance
The PRS-370 programmable resistance box is a precision resistance source with excellent characteristics of stability, temperature coefficient, and power coefficient. The use of low inductance wirewound and Z-foil resistors allows the PRS-370 to be used in ac applications with minimal resistance change below 1 kHz.

Interface
Operation is both local using a color touch screen and numeric keypad or remote control with the standard IEEE-488 interface. The versatility of the IEEE-488 interface allows you to completely automate your testing when not used with a DMM.

Calibration history
Calibration history of each internal resistor can be reviewed to show drift and performance. The calibration history data can be retrieved via SCPI command for further analysis.
Pressing a switch on the front panel allows access to calibration history and adjustment menus minimizing unauthorized access.

Cyber security statement
The PRS-370 contains a microcontroller, and runs proprietary firmware. The firmware can only be updated via a JTAG or similar cable and only accessed by removing the top cover of the instrument.
There are no facilities to update firmware via the GPIB interface on the PRS-370.
Windows or Linux are not used in this product.
A factory reset is provide which will reset the PRS-370 back to factory default including calibration data history and all other data that can be saved by a user.
 

ZAR -1